Introduction to Marine Hydrodynamics (NA235)
 (2014-2015, $2^{\text {nd }}$ Semester)

Assignment No. 7

(8 problems, given on May $18^{\text {th }}$, submitted on May $28^{\text {th }}, 2015$)

Problem 1: Given a deep water wave with period, $\tau=5 s$, wave height, $H=1.2 m$. Calculate wavelength, phase velocity (celerity), group velocity and energy transmission rate of the wave.

Problem 2: Given a deep water wave of wavelength $6.28 m$. How deep from the free surface, wave height will be reduced to half of the one at the free surface?

Problem 3: In a water field of depth $H=10 m$, there is a surface wave of amplitude, $a=1 m$, and wave number, $k=0.2 m^{-1}$. (1) Calculate wavelength, phase velocity and period of the wave. (2) Give out the equation of the wave elevation. (3) Write down equation of the path of a water particle at $x_{0}=0$ and $z_{0}=-5 m$.

Problem 4: Given two deep water waves with wavelength $15 m$ and 150 m respectively. (1)Evaluate their wave velocities (i.e. phase velocities)
and periods. (2)Discuss variations when they propagates from deep water into a shore of 10 m deep.

Problem 5: Set a buoy on a sea of depth $H=6.2 m$. Under the excitation of a water wave, the buoy is moving up and down (i.e. heaving) periodically at a rate of 12 times a minute. The wave height is measured of $h=1.2 m$. Calculate the wave length and amplitudes of the velocity and dynamic pressure of a particle at the seabed.

Problem 6: Two kinds of fluid are separated by a horizontal plane. Their thicknesses are assumed great enough. The upper layer fluid is known of density ρ^{\prime}, and the lower layer of density ρ. (1)Show that a surface wave of wave length λ on the separation plane will propagate at the velocity

$$
c=\sqrt{\frac{g \lambda}{2 \pi} \frac{\rho-\rho^{\prime}}{\rho+\rho^{\prime}}}
$$

(2)Show that for any group waves, group velocity is just equal to half of the wave velocity.

Problem 7: Show that for deep water waves, hydrodynamic pressure of any fluid particle just equals the hydrostatic pressure of the particle at the equilibrium position in calm water, that is,

$$
\frac{P}{\rho}+g z_{0}=\text { const } .
$$

Problem 8: A standing wave is formed near a vertical breakwater. Show that a water particle with equilibrium position $\left(x_{0}, z_{0}\right)$ will trace along the flowing straight line

$$
\frac{z-z_{0}}{x-x_{0}}=-\tanh k\left(H+z_{0}\right) \cot k x_{0}
$$

where H is the water depth. $O x z$ is a Cartesian coordinate system with $O x$ horizontal and perpendicular to the breakwater, and $O z$ vertical, upward positive.

