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Introduction to Marine Hydrodynamics (NA235)  
(2014-2015, 2nd Semester) 

 

Assignment No.6 

(9 problems, given on May 4, submitted on May 14th, 2015) 

 

Problem 1:  Inside a large sphere of radius R fills with incompressible perfect fluid. 

A small ball of radius a is moving in it at speed V(t). At initial instant t0, the small ball 

is concentric with the large sphere. Please write down governing equations and 

boundary conditions that velocity potential of the flow between them obeys.  

 

 
Figure 6-1 

 

Solution:  Surface of the small ball is a sphere. Its center varies with time as follows 

       
0

             0
t

c c c

t

x t V d y t z t     

and the surface of the small ball is expressed as 

c a r r     or     2 2 2 2
cx x y z a     
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The large sphere can be expressed 

Rr     or    2 2 2 2x y z R    

Therefore potential flow inside the large sphere and outside the small ball is governed by 

Laplace equation and impermeable condition on the large sphere and the small sphere. 

Mathematically they are written in the form 

 

 

    

     
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2 2 2
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           on 
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  

  
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  
         

   
      

   
      

  

r r r r

r

r r



. 

  

Problem 2:  Given a planar potential flow, in which there are a point source of 

intensity Q1=20m3/s at point (-1, 0), and a point sink of intensity Q2=40m3/s at point 

(2, 0). Density of the fluid is 1.8  kg/m3. If pressure at origin is 0, please calculate 

velocities and pressures at point (0, 1) and at point (1, 1) respectively.  

 

Solution:  Velocity potential of the flow is expressed as  

2 2 2 21 2ln ( 1) ln ( 2)
2 2

Q Q
x y x y

 
       

and from it velocity components are derived  

1 2
2 2 2 2

1 2

2 ( 1) 2 ( 2)

Q Qx x
u

x x y x y


 

  
  
    

 

1 2
2 2 2 22 ( 1) 2 ( 2)

Q Qy y
v

y x y x y


 


  
    

 

Specifically, at point  0,1  

 1 2 2 2 2

20 0 1 40 0 2
4.14

2 (0 1) 1 2 (0 2) 1
u m s

 
 

  
   

 

 1 2 2 2 2

20 1 40 1
0.318

2 (0 1) 1 2 (0 2) 1
v m s

 
  

   
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and at point  1,1  

 2 2 2 2 2

20 1 1 40 1 2
4.46

2 (1 1) 1 2 (1 2) 1
u m s

 
 

  
   

 

 2 2 2 2 2

20 1 40 1
2.55

2 (1 1) 1 2 (1 2) 1
v m s

 
   

   
 

and at the origin 

 0 2 2 2 2

20 0 1 40 0 2
6.37

2 (0 1) 0 2 (0 2) 0
u m s

 
 

  
   

 

 0 2 2 2 2

20 0 40 0
0

2 (0 1) 0 2 (0 2) 0
v m s

 
  

   
 

then, the Bernoulli constant is evaluated from the given pressure and the evaluated velocity at 

the origin, that is, 

 
2 2

0 0 6.37
0 20.26

2 2

P V
H m s


      

Therefore, pressures at point  0,1  and point  1,1  are evaluated from Bernoulli's equation as  

     2 2 2 2
1 1 1

1 1
1.8 20.26 4.14 0.318 20.97

2 2
P H u v Pa                  

 

and 

      22 2 2
2 2 2

1 1
1.8 20.26 4.46 2.55 12.78

2 2
P H u v Pa                   

 

respectively. 

 

Problem 3:  Velocity field of a flow is given as follows,  

2 , 2 , 2u y z v z x w x y       

① Determine the vorticity field and write down the equation of vortex lines; ② 

Calculate the flux of vorticity in a cross section of area 20.0001dS m on the plane 

1x y z   . 

 

Solution:  ① Vorticity is directly evaluated from the velocity distribution  
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 1,1,1

2 2 2

x y z

y z z x x y

  
   

  
  

i j k

ω V  

According to definition, vortex line is determined from equation 

0d ω r  

or 

1 1 1

dx dy dz
   

and finally vortex line passing through point  0 0 0, ,x y z  is expressed as 

0 0

0 0

x x y y

y y z z

  
   

 

or 

 
0

0

0

               ,

x x t

y y t t

z z t

 
     
  

. 

② Vorticity flux across area S  is expressed as 

S

I dS ω n  

Here unit normal vector is a constant 

 
 

 1,1,1 1,1,1

1,1,1 3
 n  

and  1,1,1ω  is also a constant, thus 

     21,1,1
1,1,1 0.0001 0.0001 3 0.00017 .

3S

I dS dS m s        ω n ω n  

 

Problem 4:  A flow is a superposition of a uniform flow of speed u0 = 10m/s along 

positive x-axis with a point vortex at the origin. If a stagnation point is at (0, -5), 

please ① determine the intensity of the vortex; ② calculate the velocity at (0, 5); 
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③ write down the equation of the streamline passing through the stagnation point.  

 

Solution:  ① Velocity potential of the flow is a superposition of the uniform flow and a point 

vortex at the origin, that is, 

0 2
u x 




   

and the corresponding velocity is 

0 2 2

2 2

2

2

y
u u

x x y

x
v

x y






 
  
 


 


 

Since point  0,5  is a stagnation point, it results 

   
222 2

2
0

0 5
2 2 10 100 .

5

x y
u m s

y
  

 
       


 

② Velocity at point  0,5  is directly evaluated as follows 

 

 

2 2

2 2

100 5
10 20

2 0 5
100 0

0
2 0 5

u m s

v m s







  


  


 

③ Streamline passing through the stagnation point  0, 5  is a special case of the general 

streamlines. 

dx dy

u v
      or     

0 2 2 2 22 2

dx dy
y x

u
x y x y 


 

 
 

 

that is, 

2 2
0ln 0

2
x y u y C




    . 

Substituting all the parameters and 0x  , 5y    in above expression, constant C  is 

determined, then dividing out a common factor 50 on the left side, finally the streamline passing 

through the stagnation point  0, 5  is written as 
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 2 25ln 5 5ln 5 0.x y y      

 

Problem 5:  A three dimensional axle symmetric flow of velocity potential 
3

0 3
(1 ) cos

2

a
U r

r
    

where U0 and a are constants,   is the polar angle from the symmetric axle, and r is 

the radial distance from the origin. ① Prove that for r a  it is equivalent to the 

flow of a uniform flow past a fixed sphere of radius a. ② Determine positions on 

the sphere at which the velocities take maximum value and the value of U0. 

 

Solution:  ① As radial distance is getting large enough, the velocity potential is dominated by the 

first term, that is,  
3

0 03
(1 ) cos cos

2 r

a
U r U r

r
  



    

that means that in the far field it is equivalent to a uniform flow with velocity 0U  along 

x -axis. Besides, since radial velocity at sphere r a  is 

3

0 3
(1 ) cos 0r r a

r a r a

a
u U

r r

 


 


   


 

equal to 0, it means that the sphere is an impermeable surface. As a summary, the given 

velocity potential represents a uniform flow with velocity 0U  along x -axis from far field 

passing an impermeable sphere of radius a . 

② On the sphere, only the polar component of velocity is non-zero, that is, 

3

0 03

3
(1 )sin sin .

2 2r a
r a r a

a
u U U

r r
  


 


     


 

At the uppermost and the lowest position of the sphere, i.e. 2   , velocity takes the 

maximum value   03 2 U . At  1sin 2 3    and  1sin 2 3    , velocity takes value 

0U .  

 

Problem 6:  An axle symmetric flow is generated by a point source of intensity m1 
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= 60 m3/s at the origin and another point source of intensity m2 = 30 m3/s at (0, 0, 2). 

Calculate velocities at (-1, -2, 0) and (1, 1, 1). 

 

Solution:  From the problem, symmetric axle of the flow coincides with oz  axis. Velocity 

potential of the flow is as follows  

1 2
1 2 2 2 2 24 4 ( 2)

m m

z r z r
  

 
    

  
 

From it velocity is immediately derived. Two components are non-zero. They are 

1 2
2 2 3/2 2 2 3/2

( 2)

4 ( ) 4 [( 2) ]z

m z m z
v

z z r z r


 


  
   

 

1 2
2 2 3/2 2 2 3/24 ( ) 4 [( 2) ]r

m r m r
v

r z r z r


 


  
   

. 

At point  1, 2,0  ,    2 2
1 2 5r      , 0z  , the velocity components are evaluated 

     
 3/2 3/22 222

60 0 30 (0 2) 5
0.177

9
4 0 5 4 0 2 5

zv m s
 

  
     

           

 

     
 3/2 3/22 222

60 5 30 5 54 5 5
1.153

18
4 0 5 4 0 2 5

rv m s
 

  
   

           

 

At point  1,1,1 , 2 21 1 2r    , 1z  , the velocity components are evaluated 

     
 3/2 3/22 222

60 1 30 (1 2) 5
0.459

2 3
4 1 2 4 1 2 2

zv m s
 

  
   

           

 

     
 3/2 3/22 222

60 2 30 2 15 2
1.949 .

2 3
4 1 2 4 1 2 2

rv m s
 

 
   

           

 

 

Problem 7:  A sphere is fixed in a uniform flow field. If a is the radius of the sphere, 

U0 and P0 are the speed and pressure of the uniform flow, find the maximum and 

minimum pressures on the sphere and their positions. 
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Solution:  In a spherical coordinate system with origin at the center of the sphere, velocity 

potential of the flow is expressed as  
3

0 3
(1 ) cos

2

a
U r

r
    

where r  is the radial distance from the origin and   is the meridian angle from the axis 

parallel to the direction of the uniform flow. The corresponding velocity is derived from the 

velocity potential as follows, 
3

0 3
(1 )cosr

a
v U

r r

 
  


 

3

0 3

1
(1 )sin .

2

a
v U

r r
 



   


 

On the sphere, r a , we have 0rv   and 3
02 sin .v U    According to Bernoulli's equation, 

pressure on the sphere is written as 
2 2 2

20 0
0 0

9
1 sin .

2 2 2 4

U v U
P P P          

 
 

It takes maximum value 21
max 0 02P P U   at 0   and   . It takes minimum value 

25
min 0 08P P U   at 2

   and 2
   . 

 

 

Problem 8:  Given 
2

0 ( )cos
a

V r
r

    the velocity potential of a circular flow. 

Please calculate the resultant hydrodynamic force on the semi-circle in Figure 6-2. 
 

 

Figure 6-2 

 

Solution:  From the velocity potential, velocity on the semi-circle, r a  and  ,0   , can be 

immediately evaluated as follows  
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2

0 02

1
(1 )sin 2 sin ,

r a
r a r a

a
u V V

r r
  


 


     


 

while 0r r a
u


 . According to Bernoulli's equation, dynamic pressure on the semi-circle is 

expressed as  

  2 2 2
0

1
2 sin ,

2
p u V        

which is normal to and inward to the semi-circle. Due to horizontal symmetry, the resultant 

dynamic force is vertical and evaluated below,  

   0 0 2 2 2
0 0

8
sin 2 sin sin .

3yF p ad V ad a V
 

       
 

         

That is, the resultant dynamic force is vertically downward of magnitude 28
03 a V . 

 

Problem 9:  A circular cylinder of radius R and length L is suspended at a fixed 

point O  with thin light ropes OA and OB. Denote A  and B  the two end points of 

the axle of the circular cylinder. Points O , A  and B  forms a isosceles triangle, i.e., 

OA OB . Denote o  the midpoint of the axle of the circular cylinder, it is given that 

oO l . Now axle AB of the circular cylinder is globally rotating around the fixed 

point O  at an angular velocity  , and concurrently the circular cylinder is locally 

rotating around its axle AB at an angular velocity  . Given weight of the cylinder is 

G, fluid density is  , and l R . Calculate tensions applied to the ropes OA and OB 

respectively. 

 

Solution:  For the global rotation, a centrifugal force will be applied to the rope, and it is directly 

estimated, similar to a mass point moves around a point at a constant angular velocity, as  
2 2 2( )

C

G V G l Gl
F

g l g l g

 
    

where g  is the gravitational acceleration.  

 On the other hand, due to local rotation and the viscosity, fluid particles on the surface of 
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the circular cylinder will be move with the cylinder at a speed of u R  and it will cause a 

circulation, 22 2Ru R     , around the cylinder. Since l R , globally, the cylinder is 

approximately moving at a constant speed, U l  . As a result, a lift force  

2 22 2F U L l R L lR L               

is exerted on the cylinder. Direction of this lift force will be changed from centrifugal to centric 

alternatively.  

 Furthermore, as the cylinder is globally rotating around the fixed point O , it will 

accompany a centric acceleration 2 2
Ca U l l   , and an added mass, 2

CC R L  , has to 

be taking into account. As a result, it will cause a centrifugal force 

2 2 2 2.CC CF a R L l lLR         

 Now put above 3 forces together, rope oO  will be applied a tension, i.e. centrifugal force, 

of magnitude 

2
2 2 2

2 2

2

2

   2

   1 2

   1 2

   2

CF F F F

Gl
lR L lLR

g

G
R L l

g

G
l

g g

G
l

g g

 

 







  


    

          
           
   

      

 

where 2g R L    is the weight of the fluid displaced by the circular cylinder.  

 Here, rope oO  does not exist, instead rope OA  and rope OB  suspend the cylinder. We 

can immediately find the tension force on the rope OA  and rope OB  from the resultant force 

F  based on the geometric relations. 

 

 22 2 2

2 2 2

2 4

2

     2 4

OA OB

l L F l L
F F F

l l

G
l L

g g



 
  

   
        

 

 

 


