Introduction to Marine Hydrodynamics (NA235)

(2014-2015, 2nd Semester)

Assignment No.6

(9 problems, given on May 4, submitted on May 14th, 2015)

Problem 1: Inside a large sphere of radius *R* fills with incompressible perfect fluid. A small ball of radius *a* is moving in it at speed V(t). At initial instant t_0 , the small ball is concentric with the large sphere. Please write down governing equations and boundary conditions that velocity potential of the flow between them obeys.

Figure 6-1

Problem 2: Given a planar potential flow, in which there are a point

source of intensity $Q_1=20m^3/s$ at point (-1, 0), and a point sink of intensity $Q_2=40m^3/s$ at point (2, 0). Density of the fluid is $\rho = 1.8 kg/m^3$. If pressure at origin is 0, please calculate velocities and pressures at point (0, 1) and at point (1, 1) respectively.

Problem 3: Velocity field of a flow is given as follows,

$$u = y + 2z, \quad v = z + 2x, \quad w = x + 2y$$

(1) Determine the vorticity field and write down the equation of vortex lines; (2) Calculate the flux of vorticity in a cross section of area $dS = 0.0001m^2$ on the plane x + y + z = 1.

Problem 4: A flow is a superposition of a uniform flow of speed $u_0 = 10m/s$ along positive x-axis with a point vortex at origin. If a stagnation point is at (0, -5), please ① determine the intensity of the vortex; ② calculate the velocity at (0, 5); ③ write down the equation of the streamline passing through the stagnation point.

Problem 5: A three dimensional axle symmetric flow with velocity potential

$$\varphi = U_0 r (1 + \frac{a^3}{2r^3}) \cos \theta$$

where U_0 and a are constants, θ is the polar angle from the symmetric axle, and r is the radial distance from origin. (1) Prove that for $r \ge a$ it is

equivalent to the flow of a uniform flow past a fixed sphere of radius a. (2) Determine positions on the sphere at which the velocities take maximum value and the value of U_0 respectively.

Problem 6: An axle symmetric flow is generated by a point source of intensity $m_1 = 60 \ m^3/s$ at the origin and another point source of intensity $m_2 = 30 \ m^3/s$ at (0, 0, 2). Calculate velocities at (-1, -2, 0) and (1, 1, 1).

Problem 7: A sphere is fixed in a uniform flow field. If *a* is radius of the sphere, U_0 and P_0 are the speed and pressure of the uniform flow, find the maximum and minimum pressures on the sphere and their positions.

Problem 8: Given $\varphi = V_0(r + \frac{a^2}{r})\cos\theta$ the velocity potential of a circular flow. Please calculate the resultant hydrodynamic force on the semi-circle in Figure 6-2.

Figure 6-2

Problem 9: A circular cylinder of radius *R* and length *L* is suspended at

a fixed point *O* with thin light ropes *OA* and *OB*. Denote *A* and *B* the two end points of the axle of the circular cylinder. Points *O*, *A* and *B* forms a isosceles triangle, i.e., $\overline{OA} = \overline{OB}$. Denote *o* the midpoint of the axle of the circular cylinder, it is given that $\overline{oO} = l$. Now axle *AB* of the circular cylinder is globally rotating around the fixed point *O* at an angular velocity Ω , and concurrently the circular cylinder is locally rotating around its axle *AB* at an angular velocity ω . Given weight of the cylinder is *G*, fluid density is ρ , and $l \gg R$. Calculate tensions applied to the ropes *OA* and *OB* respectively.