Introduction to Marine Hydrodynamics (NA235)
 (2014-2015, ${ }^{\text {nd }}$ Semester)

Assignment No. 6

(9 problems, given on May 4 , submitted on May $14^{\text {th }}, 2015$)

Problem 1: Inside a large sphere of radius R fills with incompressible perfect fluid. A small ball of radius a is moving in it at speed $V(t)$. At initial instant t_{0}, the small ball is concentric with the large sphere. Please write down governing equations and boundary conditions that velocity potential of the flow between them obeys.

Figure 6-1

Problem 2: Given a planar potential flow, in which there are a point
source of intensity $Q_{1}=20 \mathrm{~m}^{3} / \mathrm{s}$ at point $(-1,0)$, and a point sink of intensity $Q_{2}=40 \mathrm{~m}^{3} / \mathrm{s}$ at point $(2,0)$. Density of the fluid is $\rho=1.8 \mathrm{~kg} / \mathrm{m}^{3}$. If pressure at origin is 0 , please calculate velocities and pressures at point (0 , $1)$ and at point $(1,1)$ respectively.

Problem 3: Velocity field of a flow is given as follows,

$$
u=y+2 z, \quad v=z+2 x, \quad w=x+2 y
$$

(1) Determine the vorticity field and write down the equation of vortex lines; (2) Calculate the flux of vorticity in a cross section of area $d S=0.0001 m^{2}$ on the plane $x+y+z=1$.

Problem 4: A flow is a superposition of a uniform flow of speed $u_{0}=$ $10 \mathrm{~m} / \mathrm{s}$ along positive x -axis with a point vortex at origin. If a stagnation point is at $(0,-5)$, please (1) determine the intensity of the vortex; (2) calculate the velocity at $(0,5)$; (3) write down the equation of the streamline passing through the stagnation point.

Problem 5: A three dimensional axle symmetric flow with velocity potential

$$
\varphi=U_{0} r\left(1+\frac{a^{3}}{2 r^{3}}\right) \cos \theta
$$

where U_{0} and a are constants, θ is the polar angle from the symmetric axle, and r is the radial distance from origin. (1) Prove that for $r \geq a$ it is
equivalent to the flow of a uniform flow past a fixed sphere of radius a.
(2) Determine positions on the sphere at which the velocities take maximum value and the value of U_{0} respectively.

Problem 6: An axle symmetric flow is generated by a point source of intensity $m_{1}=60 \mathrm{~m}^{3} / \mathrm{s}$ at the origin and another point source of intensity $m_{2}=30 \mathrm{~m}^{3} / \mathrm{s}$ at $(0,0,2)$. Calculate velocities at $(-1,-2,0)$ and $(1,1,1)$.

Problem 7: A sphere is fixed in a uniform flow field. If a is radius of the sphere, U_{0} and P_{0} are the speed and pressure of the uniform flow, find the maximum and minimum pressures on the sphere and their positions.

Problem 8: Given $\varphi=V_{0}\left(r+\frac{a^{2}}{r}\right) \cos \theta$ the velocity potential of a circular flow. Please calculate the resultant hydrodynamic force on the semi-circle in Figure 6-2.

Figure 6-2

Problem 9: A circular cylinder of radius R and length L is suspended at
a fixed point O with thin light ropes $O A$ and $O B$. Denote A and B the two end points of the axle of the circular cylinder. Points O, A and B forms a isosceles triangle, i.e., $\overline{O A}=\overline{O B}$. Denote o the midpoint of the axle of the circular cylinder, it is given that $\overline{o O}=l$. Now axle $A B$ of the circular cylinder is globally rotating around the fixed point O at an angular velocity Ω, and concurrently the circular cylinder is locally rotating around its axle $A B$ at an angular velocity ω. Given weight of the cylinder is G, fluid density is ρ, and $l \gg R$. Calculate tensions applied to the ropes $O A$ and $O B$ respectively.

