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Problem 1:  Given velocity field of a flow:  

2 , 2 , 2u y z v z x w x y       

Determine: (1) Vorticity field of the flow and the equation of vortex lines; 

(2) Vortex strength passing a cross section with area 20.0001dS m on the 

plane 1x y z   . 

 

Solution: Let the three components of the vorticity be , ,x y z   , then: 
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The equation of vortex lines is: 
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Let the unit normal vector of 1x y z   be ( , , )n l m n
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So the strength of the vortex tube is:  

20.0001 3 0.000173 /ndS m s       

 

 

Problem 2: A planar fluid flow is given in a polar coordinate system:  
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where a, k, U0 are constants. Determine the velocity circulation around an 

arbitrary closed curve, which encloses the circle centered at the origin of 

radius r a .   

 

Solution: At r=a, vr=0, which satisfies the no- penetration condition, so 

the circle can be regarded as a solid boundary, then the vorticity is: 

2 2 2
0 0

0 3 2 2 2 2

1

2
sin (1 )sin (1 )sin

0

rv v v

r r r

U Ua k a k a
U

r r r r r r r

 



  

 
   

 

      



 



The flow outside of the circle r=a is irrotational. 

The velocity circulation around any closed curve C enclosing the circle 

r a is: 
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Problem 3: Given velocity distribution of a flow: ,u y v x    . 

Determine (1) Velocity circulation around the circle with a radius R and 

the vortex flux passing through the area surrounded by that circle; (2) 

Velocity circulation around closed curve abcd (see Figure 5-3) and the 

vortex flux passing through the area bounded by that curve. 



 

Figure 5-3 

 

Solution: This is a plane flow, so the vorticity is a scalar quantity: 



2
v u

const
x y

 
    

 
 

which is independent of the coordinates. In polar coordinates, the velocity 

distribution is: 
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(1) Velocity circulation around a circle with a radius R is: 
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Based on Stokes’ theorem, the vortex flux is: 
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(2) For the closed curve abcd , because 2 const   , the vortex flux is: 
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Problem 4: Suppose an ideal fluid is barotropic and under the action of 

body forces with potential  . Now if at an instant velocity field V


 of 

such a flow is irrotational, then verify that the corresponding local 

acceleration field 
V

t


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
 will be irrotational as well at  any instant. 

Furthermore, derive the theorem that in that case vortex can be neither 

created nor destroyed. 

 



Solution: From Euler equation: 1
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If the body force is potential, i.e., F  


; the fluid is barotropic, i.e., 
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Suppose the velocity field V

is irrotational at a time t=t1, then: 
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So at this time, 
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 is also irrotational (because it is potential). 

For another time t2 after t1, the velocity V

can be expanded as:  
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If 2 1t t t   is small enough, the high order terms can be neglected, i.e.,: 

2 1 1 2 1( ) ( )t t t

V
V V t t

t


  



 
 

Because 
1t

V


, 
1

( )t

V

t





 are all irrotational, 

2t
V


is also irrotational. This in 

turn, can verify that 
3t

V


, 
4t

V


…… are irrotational. 

 

 

Problem 5: Four vortices with an equal strength Γ initially located at (1, 

0), (0, 1), (-1, 0), (0, -1) respectively. Determine the path for each of 



them. 
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Figure 5-5 

 

Solution: Because of the symmetry, only consider the motion of one of 

the vortex. Take the vortex A as an example, its velocity is induced by the 

vortices at points B, C, D. 
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So the two components of velocity at point A are:  

2 2 3
0,

4 2 4A A CA BA DAu v V V V
  
  

        

Because of the symmetry, the origin is the center of gravity of the four 

vortices and it is a fixed point, Vortex A will rotate around the origin, the 

angular velocity is:   
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Thus, in polar coordinates, the motion equation of point A is:  
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Problem 6: Suppose a circular vortex line, whose radius is a, and 

strength is Γ. Determine the induced velocity on the symmetry axis.  
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Figure 5-6 

 

Solution: Take the symmetry axis is z axis, pointing upwards, and take 

the center of the vortex circle as the origin of the coordinates, as shown 

below: 

Take an element ds on the circular vortex line, it induces a velocity to 



point M at z axis:  
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Its norm is: 
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The projection of dV
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 on z axis is: 
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The induced velocity at point M by the whole circular vortex is: 
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If the circular vortex is slipping downwards along z axis with an uniform 

velocity, then the induced velocity at point M decreases. 

 



 

 

Problem 7:  Two vortices at a distance r with strengths Γ1 and Γ2 

respectively, of same magnitude 1 2| | | |   . Determine motions of these 

vortices for Γ1 and Γ2 with same or opposite signs. 
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Figure 5-7 

 

Solution: (1) Γ1 and Γ2 have the same sign 

Take the location of Γ1 as the origin of the coordinates, x axis is the 

direction along r to the right side, then the coordinates of Γ1 and Γ2 are Γ1 

(0, 0) and Γ2 (r, 0), the coordinates of the center of gravity C is: 
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The center of gravity locates in between the two vortices. If 2 1   , the 

center of gravity is close to Γ2, the two vortices will rotate around the 

center of gravity C. 

The induced velocity at Γ1 is: 2
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The angular velocity of the two vortices is: 1 1 2
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(1) Γ1 and Γ2 have the opposite sign 

Suppose 1 2   , the coordinates of Γ1 and Γ2 are Γ1 (0, 0) and Γ2 (r, 0), 

the coordinates of the center of gravity C is: 
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The two vortices rotate around the center of gravity. 
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