Introduction to Marine Hydrodynamics (NA235)
 (2014-2015, ${ }^{\text {nd }}$ Semester)

Assignment No. 5

(Seven problems, given on Apr 16, submitted on Apr 27, 2015)

Problem 1: Given velocity field of a flow:

$$
u=y+2 z, \quad v=z+2 x, \quad w=x+2 y
$$

Determine: (1) Vorticity field of the flow and the equation of vortex lines;
(2) Vortex strength passing a cross section with area $d S=0.0001 \mathrm{~m}^{2}$ on the plane $x+y+z=1$.

Solution: Let the three components of the vorticity be $\Omega_{x}, \Omega_{y}, \Omega_{z}$, then:

$$
\begin{aligned}
& \Omega_{x}=\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}=2-1=1 \\
& \Omega_{y}=\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}=2-1=1 \\
& \Omega_{z}=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=2-1=1
\end{aligned}
$$

So the vorticity is: $\vec{\Omega}=\vec{i}+\vec{j}+\vec{k}$
The equation of vortex lines is: $\frac{d x}{\Omega_{x}}=\frac{d y}{\Omega_{y}}=\frac{d z}{\Omega_{z}}$, then: $\left\{\begin{array}{l}\frac{d x}{1}=\frac{d y}{1} \\ \frac{d y}{1}=\frac{d z}{1}\end{array}\right.$
Integrating, $\left\{\begin{array}{l}x-y=C_{1} \\ y-z=C_{2}\end{array}\right.$

Let the unit normal vector of $x+y+z=1$ be $\vec{n}(l, m, n)$,
Because $F(x, y, z)=x+y+z-1=0$, then: $\frac{\partial F}{\partial x}=1, \quad \frac{\partial F}{\partial y}=1, \quad \frac{\partial F}{\partial z}=1$

$$
l=\frac{\frac{\partial F}{\partial x}}{\sqrt{\left(\frac{\partial F}{\partial x}\right)^{2}+\left(\frac{\partial F}{\partial y}\right)^{2}+\left(\frac{\partial F}{\partial z}\right)^{2}}}=\frac{1}{3} \sqrt{3}
$$

Similarly, $m=n=\frac{1}{3} \sqrt{3}$
$\Omega_{n}=\vec{\Omega} \cdot d \vec{S}=(\vec{i}+\vec{j}+\vec{k}) \cdot(\vec{i}+\vec{j}+\vec{k}) \cdot \frac{1}{3} \sqrt{3}=\sqrt{3}$
So the strength of the vortex tube is:

$$
\Gamma=\Omega_{n} d S=0.0001 \times \sqrt{3}=0.000173 \mathrm{~m}^{2} / \mathrm{s}
$$

Problem 2: A planar fluid flow is given in a polar coordinate system:

$$
v_{r}=U_{0}\left(1-\frac{a^{2}}{r^{2}}\right) \cos \theta, \quad v_{\theta}=-U_{0}\left(1+\frac{a^{2}}{r^{2}}\right) \sin \theta+\frac{k}{r}
$$

where a, k, U_{0} are constants. Determine the velocity circulation around an arbitrary closed curve, which encloses the circle centered at the origin of radius $r=a$.

Solution: At $r=a, v_{r}=0$, which satisfies the no- penetration condition, so the circle can be regarded as a solid boundary, then the vorticity is:

$$
\begin{aligned}
\Omega & =\frac{\partial v_{\theta}}{\partial r}+\frac{v_{\theta}}{r}-\frac{1}{r} \frac{\partial v_{r}}{\partial \theta} \\
& =U_{0} \frac{2 a^{2}}{r^{3}} \sin \theta-\frac{k}{r^{2}}-\frac{U_{0}}{r}\left(1+\frac{a^{2}}{r^{2}}\right) \sin \theta+\frac{k}{r^{2}}+\frac{U_{0}}{r}\left(1-\frac{a^{2}}{r^{2}}\right) \sin \theta \\
& =0
\end{aligned}
$$

The flow outside of the circle $r=a$ is irrotational.
The velocity circulation around any closed curve C enclosing the circle $r=a$ is:

$$
\Gamma_{C}=\Gamma_{r=a}=\int_{0}^{2 \pi}\left[-U_{0}\left(1+\frac{a^{2}}{r^{2}}\right) \sin \theta+\frac{k}{r}\right] r d \theta=2 \pi k
$$

Problem 3: Given velocity distribution of a flow: $u=-\omega y, \quad v=\omega x$. Determine (1) Velocity circulation around the circle with a radius R and the vortex flux passing through the area surrounded by that circle; (2) Velocity circulation around closed curve abcd (see Figure 5-3) and the vortex flux passing through the area bounded by that curve.

Figure 5-3

Solution: This is a plane flow, so the vorticity is a scalar quantity:

$$
\Omega=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=2 \omega=\text { const }
$$

which is independent of the coordinates. In polar coordinates, the velocity distribution is:

$$
\begin{aligned}
v_{r} & =u \cos \theta+v \sin \theta=-\omega r \sin \theta \cos \theta+\omega r \cos \theta \sin \theta \\
& =0 \\
v_{\theta} & =-u \sin \theta+v \cos \theta=\omega r \sin ^{2} \theta+\omega r \cos ^{2} \theta \\
& =\omega r
\end{aligned}
$$

(1) Velocity circulation around a circle with a radius R is:

$$
\Gamma_{r=R}=\int_{0}^{2 \pi} v_{\theta} r d \theta=\omega R^{2} \int_{0}^{2 \pi} d \theta=2 \pi \omega R^{2}
$$

Based on Stokes' theorem, the vortex flux is:

$$
\phi=\iint_{\sigma} \Omega_{n} d \sigma=\Gamma_{r=R}=2 \pi \omega R^{2}
$$

(2) For the closed curve $a b c d$, because $\Omega=2 \omega=$ const, the vortex flux is: $\phi=\Omega \sigma=2 \omega R \cdot d R \cdot d \theta=\Gamma_{\text {abcd }}$

Problem 4: Suppose an ideal fluid is barotropic and under the action of body forces with potential Θ. Now if at an instant velocity field \vec{V} of such a flow is irrotational, then verify that the corresponding local acceleration field $\frac{\partial \vec{V}}{\partial t}$ will be irrotational as well at any instant. Furthermore, derive the theorem that in that case vortex can be neither created nor destroyed.

Solution: From Euler equation: $\frac{\partial \vec{V}}{\partial t}+(\vec{V} \cdot \nabla) \vec{V}=\vec{F}-\frac{1}{\rho} \nabla P$,
where $(\vec{V} \cdot \nabla) \vec{V}=\nabla\left(\frac{V^{2}}{2}\right)-\vec{V} \times \vec{\Omega}$
If the body force is potential, i.e., $\vec{F}=-\nabla \Theta$; the fluid is barotropic, i.e., $\nabla \Pi=\frac{1}{\rho} \nabla P$, then Euler equation can be transformed as:

$$
\frac{\partial \vec{V}}{\partial t}=-\nabla\left(\frac{V^{2}}{2}+\Pi+\Theta\right)+\vec{V} \times \vec{\Omega}
$$

Suppose the velocity field \vec{V} is irrotational at a time $t=t_{1}$, then:

$$
\left(\frac{\partial \vec{V}}{\partial t}\right)_{t_{1}}=-\nabla\left(\frac{V^{2}}{2}+\Pi+\Theta\right)+\vec{V} \times \vec{\Omega}
$$

So at this time, $\left(\frac{\partial \vec{V}}{\partial t}\right)_{t_{1}}$ is also irrotational (because it is potential).
For another time t 2 after t 1 , the velocity \vec{V} can be expanded as:

$$
\vec{V}_{t_{2}}=\vec{V}_{t_{1}}+\left(\frac{\partial \vec{V}}{\partial t}\right)_{t_{1}}\left(t_{2}-t_{1}\right)+\left(\frac{\partial^{2} \vec{V}}{\partial t^{2}}\right)_{t_{1}} \frac{\left(t_{2}-t_{1}\right)^{2}}{2}+\cdots
$$

If $\Delta t=t_{2}-t_{1}$ is small enough, the high order terms can be neglected, i.e.,:

$$
\vec{V}_{t_{2}}=\vec{V}_{t_{1}}+\left(\frac{\partial \vec{V}}{\partial t}\right)_{t_{1}}\left(t_{2}-t_{1}\right)
$$

Because $\vec{V}_{t_{1}},\left(\frac{\partial \vec{V}}{\partial t}\right)_{t_{1}}$ are all irrotational, $\vec{V}_{t_{2}}$ is also irrotational. This in turn, can verify that $\vec{V}_{t_{3}}, \vec{V}_{t_{4}} \ldots \ldots$ are irrotational.

Problem 5: Four vortices with an equal strength Γ initially located at (1, $0),(0,1),(-1,0),(0,-1)$ respectively. Determine the path for each of
them.

Figure 5-5

Solution: Because of the symmetry, only consider the motion of one of the vortex. Take the vortex A as an example, its velocity is induced by the vortices at points $\mathrm{B}, \mathrm{C}, \mathrm{D}$.

$$
\begin{gathered}
V_{B A}=\frac{\Gamma}{2 \pi \cdot \sqrt{2}}=\frac{\Gamma}{2 \sqrt{2} \pi} \\
V_{D A}=\frac{\Gamma}{2 \pi \cdot \sqrt{2}}=\frac{\Gamma}{2 \sqrt{2} \pi} \\
V_{C A}=\frac{\Gamma}{2 \pi \cdot 2}=\frac{\Gamma}{4 \pi}
\end{gathered}
$$

So the two components of velocity at point A are:

$$
u_{A}=0, \quad v_{A}=V_{C A}+\sqrt{V_{B A}^{2}+V_{D A}^{2}}=\frac{\Gamma}{4 \pi}+\frac{\Gamma}{2 \pi}=\frac{3 \Gamma}{4 \pi}
$$

Because of the symmetry, the origin is the center of gravity of the four vortices and it is a fixed point, Vortex A will rotate around the origin, the angular velocity is:

$$
\omega=\frac{v_{A}}{r}=\frac{3 \Gamma}{4 \pi \cdot 1}=\frac{3 \Gamma}{4 \pi}
$$

Thus, in polar coordinates, the motion equation of point A is:

$$
r_{A}=1, \quad \theta_{A}=\frac{3 \Gamma}{4 \pi} t
$$

Similarly,

$$
\begin{array}{ll}
r_{B}=1, & \theta_{B}=\frac{3 \Gamma}{4 \pi} t+\frac{\pi}{2} \\
r_{C}=1, & \theta_{C}=\frac{3 \Gamma}{4 \pi} t+\pi \\
r_{D}=1, & \theta_{D}=\frac{3 \Gamma}{4 \pi} t+\frac{3 \pi}{2}
\end{array}
$$

Problem 6: Suppose a circular vortex line, whose radius is a, and strength is Γ. Determine the induced velocity on the symmetry axis.

Figure 5-6

Solution: Take the symmetry axis is z axis, pointing upwards, and take the center of the vortex circle as the origin of the coordinates, as shown below:

Take an element $d s$ on the circular vortex line, it induces a velocity to
point M at z axis:

$$
d \vec{V}=\frac{\Gamma}{4 \pi} \frac{d \vec{s} \times d \vec{r}}{r^{3}}
$$

Its norm is: $|d \vec{V}|=\frac{\Gamma}{4 \pi} \frac{a d \theta}{r^{2}}=\frac{\Gamma a d \theta}{4 \pi\left(a^{2}+z^{2}\right)}$
The projection of $d \vec{V}$ on z axis is:

$$
\begin{aligned}
d w & =\frac{-\Gamma a d \theta}{4 \pi\left(a^{2}+z^{2}\right)} \sin \alpha \\
& =\frac{-\Gamma a d \theta}{4 \pi\left(a^{2}+z^{2}\right)} \cdot \frac{a}{\sqrt{a^{2}+z^{2}}} \\
& =\frac{-\Gamma a^{2} d \theta}{4 \pi\left(a^{2}+z^{2}\right)^{3 / 2}}
\end{aligned}
$$

The induced velocity at point M by the whole circular vortex is:

$$
w=\oint d w=-\int_{0}^{2 \pi} \frac{-\Gamma a^{2}}{4 \pi\left(a^{2}+z^{2}\right)^{3 / 2}} d \theta=\frac{-\Gamma a^{2}}{2\left(a^{2}+z^{2}\right)^{3 / 2}}
$$

If the circular vortex is slipping downwards along z axis with an uniform velocity, then the induced velocity at point M decreases.

Problem 7: Two vortices at a distance r with strengths Γ_{1} and Γ_{2} respectively, of same magnitude $\left|\Gamma_{1}\right| \nmid \Gamma_{2} \mid$. Determine motions of these vortices for Γ_{1} and Γ_{2} with same or opposite signs.

Figure 5-7

Solution: (1) Γ_{1} and Γ_{2} have the same sign
Take the location of Γ_{1} as the origin of the coordinates, x axis is the direction along r to the right side, then the coordinates of Γ_{1} and Γ_{2} are Γ_{1} $(0,0)$ and $\Gamma_{2}(r, 0)$, the coordinates of the center of gravity C is:

$$
\begin{aligned}
& \xi_{C}=\frac{\Gamma_{1} \xi_{1}+\Gamma_{2} \xi_{2}}{\Gamma_{1}+\Gamma_{2}}=\frac{\Gamma_{2} r}{\Gamma_{1}+\Gamma_{2}}<r \\
& \eta_{C}=\frac{\Gamma_{1} \eta_{1}+\Gamma_{2} \eta_{2}}{\Gamma_{1}+\Gamma_{2}}=0
\end{aligned}
$$

The center of gravity locates in between the two vortices. If $\Gamma_{2}>\Gamma_{1}$, the center of gravity is close to Γ_{2}, the two vortices will rotate around the center of gravity C .

The induced velocity at Γ_{1} is: $v_{1}=\frac{\Gamma_{2}}{2 \pi r}$

The angular velocity of the two vortices is: $\omega=\frac{v_{1}}{\xi_{c}}=\frac{\Gamma_{1}+\Gamma_{2}}{2 \pi r^{2}}$
(1) Γ_{1} and Γ_{2} have the opposite sign

Suppose $\left|\Gamma_{1}\right|<\left|\Gamma_{2}\right|$, the coordinates of Γ_{1} and Γ_{2} are $\Gamma_{1}(0,0)$ and $\Gamma_{2}(r, 0)$, the coordinates of the center of gravity C is:

$$
\begin{aligned}
& \xi_{C}=\frac{\Gamma_{2} r}{\Gamma_{1}+\Gamma_{2}}>r \\
& \eta_{C}=0
\end{aligned}
$$

The two vortices rotate around the center of gravity.
The induced velocity at Γ_{1} is: $v_{1}=\frac{\Gamma_{2}}{2 \pi r}$
The angular velocity of the two vortices is: $\omega=\frac{v_{1}}{\xi_{C}}=\frac{\Gamma_{1}+\Gamma_{2}}{2 \pi r^{2}}$

