Introduction to Marine Hydrodynamics (NA235)
 (2014-2015, $2^{\text {nd }}$ Semester)

Assignment No. 5

(Seven problems, given on Apr 16, submitted on Apr 27, 2015)

Problem 1: Given velocity field of a flow:

$$
u=y+2 z, \quad v=z+2 x, \quad w=x+2 y
$$

Determine: (1) Vorticity field of the flow and the equation of vortex lines;
(2) Vortex strength passing a cross section with area $d S=0.0001 \mathrm{~m}^{2}$ on the plane $x+y+z=1$.

Problem 2: A planar fluid flow is given in a polar coordinate system:

$$
v_{r}=U_{0}\left(1-\frac{a^{2}}{r^{2}}\right) \cos \theta, \quad v_{\theta}=-U_{0}\left(1+\frac{a^{2}}{r^{2}}\right) \sin \theta+\frac{k}{r}
$$

where a, k, U_{0} are constants. Determine the velocity circulation around an arbitrary closed curve, which encloses the circle centered at the origin of radius $r=a$.

Problem 3: Given velocity distribution of a flow: $u=-\omega y, \quad v=\omega x$.

Determine (1) Velocity circulation around the circle with a radius R and the vortex flux passing through the area surrounded by that circle; (2) Velocity circulation around closed curve abcd (see Figure 5-3) and the vortex flux passing through the area bounded by that curve.

Figure 5-3

Problem 4: Suppose an ideal fluid is barotropic and under the action of body forces with potential Θ. Now if at an instant velocity field \vec{V} of such a flow is irrotational, then verify that the corresponding local acceleration field $\frac{\partial \vec{V}}{\partial t}$ will be irrotational as well at any instant. Furthermore, derive the theorem that in that case vortex can be neither created nor destroyed.

Problem 5: Four vortices with an equal strength Γ initially located at (1, $0),(0,1),(-1,0),(0,-1)$ respectively. Determine the path for each of them.

Figure 5-5

Problem 6: Suppose a circular vortex line, whose radius is a, and strength is Γ. Determine the induced velocity on the symmetry axis.

Figure 5-6

Problem 7: Two vortices at a distance r with strengths Γ_{1} and Γ_{2}
respectively, of same magnitude $\left|\Gamma_{1}\right| \nmid=\left|\Gamma_{2}\right|$. Determine motions of these vortices for Γ_{1} and Γ_{2} with same or opposite signs.

$$
\left|\Gamma_{1}\right| \neq\left|\Gamma_{2}\right|
$$

Figure 5-7

