Introduction to Marine Hydrodynamics (NA235)
 (2014-2015, $2^{\text {nd }}$ Semester)

Solutions to Assignment No. 3

(Eight problems, submitted on March $30^{\text {th }}, 2015$)

Problem 1: Consider two flows:
(a) $\left\{\begin{array}{l}v_{x}=1 \\ v_{y}=2\end{array}\right.$;
(b) $\left\{\begin{array}{l}v_{x}=4 x \\ v_{y}=-4 y\end{array}\right.$
(1) Determine if the flow (a) has the stream function ψ. If does, solve the stream function and plot graph of the stream function;
(2) Determine if the flow (b) has the velocity potential φ. If does, solve φ, and plot the equipotential lines.

Solution: (1) For flow (a), $\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}=0$, which satisfies the continuity equation of a 2D incompressible flow, so there exists the stream function.

Based on: $\left\{\begin{array}{l}\frac{\partial \psi}{\partial y}=v_{x}=1 \\ \frac{\partial \psi}{\partial x}=-v_{y}=-2\end{array}\right.$,
the stream function is solved as: $\psi=y-2 x$ (the integral constant has been neglected).

From the definition of the streamline: $\psi=c$, so the streamline equation
is: $y-2 x=c$, the streamlines are a group of parallel straight lines with a slope of 2.
(2) Because the vorticity is $\Omega_{z}=\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}=0$, flow (b) is irrotational flow, with potential function.

From $\left\{\begin{array}{l}\frac{\partial \varphi}{\partial x}=v_{x}=4 x \\ \frac{\partial \varphi}{\partial y}=v_{y}=-4 y\end{array}\right.$, the potential function is solved as: $\varphi=2\left(x^{2}-y^{2}\right)$ (the integral constant has been neglected).

Similarly, flow (b) satisfies the continuity equation of a 2D incompressible flow, so there exist the stream function.

From $\left\{\begin{array}{l}\frac{\partial \psi}{\partial y}=v_{x}=4 x \\ \frac{\partial \psi}{\partial x}=-v_{y}=4 y,\end{array}\right.$ the stream function is $\psi=4 x y$. Thus, the equipotential lines are expressed as: $x^{2}-y^{2}=c$, the streamline equation is: $x y=c$. The equipotential lines and streamlines are two groups of hyperbolic lines.

Problem 2: Consider a plane flow field $v_{x}=1+2 t, v_{y}=3+4 t$. Determine: (1) Streamline equation; (2) at $t=0$, the shapes of three streamlines passing points $(0,0),(0,1),(0,-1) ;(3)$ at $t=0$, the pathline equation of a fluid particle locating at point $(0,0)$.

Solution: (1) Because $\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}=0$, it satisfies the continuity equation of a 2 D incompressible flow, there exist the stream function.

From $\left\{\begin{array}{l}\frac{\partial \psi}{\partial y}=v_{x}=1+2 t \\ \frac{\partial \psi}{\partial x}=-v_{y}=-3-4 t\end{array}\right.$, the stream function is determined as: $\psi=(1+2 t) y-(3+4 t) x$ (the integral constant has been neglected). The streamline equation is: $(1+2 t) y-(3+4 t) x=c$.
(2) at $t=0$ and point $(0,0)$, the constant c is 0 , so the streamline equation is: $y-3 x=0$;
at $t=0$ and point $(0,1)$, the constant c is 1 , so the streamline equation is: $y-3 x-1=0$;
at $t=0$ and point $(0,-1)$, the constant c is -1 , so the streamline equation is: $y-3 x+1=0$.
(3) From the velocity distribution: $\frac{d x}{d t}=v_{x}=1+2 t, \frac{d y}{d t}=v_{y}=3+4 t$

Thus, $x=t+t^{2}+c_{1}, y=3 t+2 t^{2}+c_{2}$
And because at $t=0$ and point $(0,0)$, the constants $c_{1}=c_{2}=0$.
The pathline equation is: $x=t+t^{2}, y=3 t+2 t^{2}$

Problem 3: The velocity components of an incompressible plane flow are given as: $v_{x}=1-y, v_{y}=t$. Determine: (1) at $t=0$, the pathline equation of a particle passing point $(0,0)$; (2) at $t=1$, the streamline equation of a
particle passing point $(0,0)$.
Solution: (1) Differential form of pathline equation is:

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} x}{v_{x}}=\mathrm{d} t \tag{a}\\
\frac{\mathrm{dy}}{v_{y}}=\mathrm{d} t
\end{array}\right.
$$

From equation (b), $\mathrm{d} y=v_{y} \mathrm{~d} t=t \mathrm{~d} t$, integrating, we get: $y=\frac{1}{2} t^{2}+c_{1}$

Because $t=0, y=0$, the constant $c_{1}=0$,

$$
\begin{equation*}
y=\frac{1}{2} t^{2} \tag{c}
\end{equation*}
$$

From equation (a), $\mathrm{d} x=v_{x} \mathrm{~d} t=(1-y) \mathrm{d} t$, substituting (c) into this equation: $\mathrm{d} x=\left(1-\frac{1}{2} t^{2}\right) \mathrm{d} t$

Integrating, we get: $x=t-\frac{1}{6} t^{3}+c_{2}$
Because $t=0, y=0$, the constant $c_{2}=0$,

$$
\begin{equation*}
x=t-\frac{1}{6} t^{3} \tag{d}
\end{equation*}
$$

Thus, the parameter equation of pathline at $t=0$ passing $(0,0)$ is $(\mathrm{c})+(\mathrm{d})$:

$$
\left\{\begin{array}{l}
y=\frac{1}{2} t^{2} \\
x=t-\frac{1}{6} t^{3}
\end{array}\right.
$$

Eliminating t, pathline equation of a particle passing point $(0,0)$ is:

$$
\frac{2}{9} y^{3}-\frac{4}{3} y^{2}+2 y-x^{2}=0
$$

(2) The streamline equation is:

$$
\frac{\mathrm{d} x}{v_{x}}=\frac{\mathrm{d} y}{v_{y}} \Rightarrow \frac{\mathrm{~d} x}{1-y}=\frac{\mathrm{d} y}{t} \Rightarrow t \mathrm{~d} x=(1-y) \mathrm{d} y, \text { time } t \text { is a parameter. }
$$

Integrating, the streamline equation is: $t x=\left(y-\frac{y^{2}}{2}\right)+c$
From $t=1, x=y=0, c=0$. So at $t=1$, the streamline equation of a particle passing point $(0,0)$ is: $x=\frac{1}{t}\left(y-\frac{y^{2}}{2}\right)$

Problem 4: The velocity distribution of an incompressible plane flow is given as: $v_{x}=x^{2}+2 x-4 y, v_{y}=-2 x y-2 y$. Determine if the flow: (1) satisfies the continuity equation; (2) is rotational; (3) has the velocity potential and stream function. If does, solve them.

Solution: (1) The condition of continuity equation is: $\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}=0$

$$
\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}=(2 x+2)+(-2 x-2)=0
$$

The flow satisfies the continuity equation.
(2) For the plane flow, the components of the angular velocity are:

$$
\omega_{x}=\omega_{y}=0, \quad \omega_{x}=\frac{1}{2}\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right)=\frac{1}{2}[-2 y-(-4)]=2-y \neq 0
$$

So the flow is rotational.
(3) Because the flow is rotational, there is no velocity potential.

The velocity components satisfy the continuity equation of a 2 D incompressible flow, there is the stream function ψ :

$$
\partial \psi / \partial x=-v_{y}, \partial \varphi / \partial y=v_{x}
$$

1) Solve stream function ψ by method of undetermined coefficients

$$
\begin{equation*}
\partial \varphi / \partial y=v_{x}=x^{2}+2 x-4 y \tag{1}
\end{equation*}
$$

Integrating $y, \psi=\int\left(x^{2}+2 x-4 y\right) d y=\left(x^{2}+2 x\right) y-2 y^{2}+f(x)$
This is the partial derivative of y, so the integral constant should be the function of $x: f(x)$, i.e., undetermined coefficient.

Besides, ψ satisfies $\partial \psi / \partial y=-v_{y}$, so from equation (1):

$$
\begin{gathered}
\partial \psi / \partial x=(2 x+2) y+f^{\prime}(x)=-(-2 x-2) y \\
f^{\prime}(x)=0, f(x)=\text { const }
\end{gathered}
$$

Substituting $f(x)=$ const into equation (1) and omitting the constant:

$$
\psi=x^{2} y+2 x y-2 y^{2}
$$

2) Solve stream function ψ by method of integral path independence

$$
\begin{aligned}
& d \psi=-v_{y} d x+v_{x} d y \\
& \psi=\int_{L}-v_{y} d x+v_{x} d y
\end{aligned}
$$

Because the integral is independent of path, choose the path as: L: $(0,0)-(x, 0)-(x, y)$, then:

$$
\begin{aligned}
& \psi=\int_{(0,0)}^{(x, y)}-v_{y} d x+v_{x} d y \\
& =\int_{(0,0)}^{(x, y)}-(-2 x y-2 y) d x+\left(x^{2}+2 x-4 y\right) d y \\
& =\int_{(0,0)}^{(x, 0)}-(-2 x \cdot 0-2 \cdot 0) d x+\int_{(x, 0)}^{(x, y)}\left(x^{2}+2 x-4 y\right) d y \\
& =x^{2} y+2 x y-2 y^{2}
\end{aligned}
$$

Problem 5: Consider the flow between two parallel plates separated by distance $h=2 \mathrm{~m}$, the velocity distribution is: $v_{x}=10 \times\left(\frac{1}{4} h^{2}-y^{2}\right)(\mathrm{m} / \mathrm{s})$, $v_{y}=0$, axis x coincides with the center line of the two plates. Determine the stream function of the flow field and plot the streamlines in between the two plates.

Solution: using the method of integral path independence

$$
\begin{gathered}
\mathrm{d} \psi=-v_{y} \mathrm{~d} x+v_{x} \mathrm{dy}=v_{x} \mathrm{dy} \\
\psi=\int_{L} 10 \times\left(\frac{1}{4} h^{2}-y^{2}\right) \mathrm{dy} \quad L:(0,0)-(0, y)-(x, y) \\
=\int_{(0,0)}^{(0, y)} 10 \times\left(\frac{1}{4} h^{2}-y^{2}\right) \mathrm{dy}=10 y\left(\frac{1}{4} h^{2}-\frac{1}{3} y^{2}\right)
\end{gathered}
$$

The streamline equation is: $\psi=10 y\left(\frac{1}{4} h^{2}-\frac{1}{3} y^{2}\right)=$ const
Thus, $y=$ const
The streamlines are a group of straight lines parallel to the center line.

Problem 6: The velocity potential of an incompressible plane potential flow is: $\varphi=0.04 x^{3}+a x y^{2}+b y^{3}$, units of x, y are m, unit of the potential
function is $\mathrm{m}^{2} / \mathrm{s}$. (1) Determine the constants a, b; (2) Compute the pressure difference between points $(0,0)$ and $(3,4)$, assume the density of the fluid is $1300 \mathrm{~kg} / \mathrm{m}^{3}$.

Solution: (1) $\left\{\begin{array}{l}v_{x}=\frac{\partial \varphi}{\partial x}=0.12 x^{2}+a y^{2} \\ v_{y}=\frac{\partial \varphi}{\partial y}=2 a x y+3 b y^{2}\end{array}\right.$
Because there is velocity potential, the flow must be irrotational, i.e.,

$$
\Omega=\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}=0
$$

In this problem, $\Omega=2 a y-2 a y=0$, so the flow is irrotational and Ω is independent of a, b.

The flow has to satisfy the continuity equation, then:

$$
\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}=0.24 x+(2 a x+6 b y)=(0.24+2 a) x+6 b y=0
$$

x, y are independent variables, so:

$$
\left\{\begin{array} { l }
{ 0 . 2 4 + 2 a = 0 } \\
{ b = 0 }
\end{array} \text { i.e., } \left\{\begin{array}{l}
a=-0.12 \\
b=0
\end{array}\right.\right.
$$

Substituting a and b into equation (a),

$$
\left\{\begin{array}{l}
v_{x}=0.12 x^{2}-0.12 y^{2} \tag{b}\\
v_{y}=-0.24 x y
\end{array}\right.
$$

(2) Determine the pressure difference: using Bernoulli equation

The plane potential flow deals with the ideal, incompressible, irrotational and steady plane flow, so the integral of steady-flow differential equation of ideal fluids is valid in the flow field:

$$
\begin{equation*}
z+\frac{p}{\rho g}+\frac{v^{2}}{2 g}=c \tag{g}
\end{equation*}
$$

According to equation (b), at point (0,0$), \quad\left\{\begin{array}{l}v_{x}=0 \\ v_{y}=0\end{array}\right.$

$$
v^{2}=0
$$

From equation (g),

$$
\begin{gathered}
\left.\left(z+\frac{p}{\rho g}+\frac{v^{2}}{2 g}\right)\right|_{(0,0)}=\left.\left(z+\frac{p}{\rho g}+\frac{v^{2}}{2 g}\right)\right|_{(3,4)} \\
0+\frac{p_{(0,0)}}{\rho g}+0=0+\frac{p_{(3,4)}}{\rho g}+\frac{9}{2 g} \\
\Delta p=p_{(0,0)}-p_{(3,4)}=\rho g\left(\frac{9}{2 g}\right) \\
\Rightarrow \quad=1300 \times 9.807 \times \frac{9}{2 \times 9.807}=5850 \mathrm{~Pa} \\
\quad=5.85 \mathrm{kPa}
\end{gathered}
$$

Problem 7: Consider an incompressible plane flow, the module (norm) of its velocity vector is: $q=\sqrt{x^{2}+y^{2}}$. The streamline equation of the flow is: $y^{2}-x^{2}=c$, where c is a constant. Determine the velocity distribution of this flow.

Solution: Let the stream function: $\psi=A\left(y^{2}-x^{2}\right) \quad A$: const
The streamline equation is: $\psi=A\left(y^{2}-x^{2}\right)=c$, i.e., $y^{2}-x^{2}=c$

$$
\left\{\begin{array}{l}
v_{x}=\frac{\partial \psi}{\partial y}=2 A y \tag{b}\\
v_{y}=-\frac{\partial \psi}{\partial x}=2 A x
\end{array}\right.
$$

The module (norm) $q=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{(2 A y)^{2}+(2 A x)^{2}}=2|A| \sqrt{x^{2}+y^{2}}$
Consider $q=\sqrt{x^{2}+y^{2}}$, then $2|A| \sqrt{x^{2}+y^{2}}=\sqrt{x^{2}+y^{2}}, \quad 2|A|=1$

$$
A= \pm \frac{1}{2}
$$

Substituting into equation (b), thus: $\left\{\begin{array}{l}v_{x}=y \\ v_{y}=x\end{array}\right.$ or $\left\{\begin{array}{l}v_{x}=-y \\ v_{y}=-x\end{array}\right.$

Problem 8: The stream function is known as: $\psi=x^{2}-y^{2}$. (1) Determine velocity potential φ; (2) Neglect the mass force, determine the pressure distribution in the flow field.

Solution: (1) From the stream function, the velocity distribution can be determined:

$$
\left\{\begin{array}{l}
v_{x}=\frac{\partial \psi}{\partial y}=-2 y \\
v_{y}=-\frac{\partial \psi}{\partial x}=-2 x
\end{array}\right.
$$

So the vorticity is $\Omega_{z}=\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}=-2-(-2)=0$, the flow is irrotational, it has the potential function, thus:

$$
\left\{\begin{array}{l}
\frac{\partial \varphi}{\partial x}=v_{x}=-2 y \\
\frac{\partial \varphi}{\partial y}=v_{y}=-2 x
\end{array}\right.
$$

The velocity potential function is solved as: $\varphi=-2 x y$ (the integral constant has been neglected).
(2) According to Bernoulli equation:

$$
\frac{V^{2}}{2}+\frac{p}{\rho}+g z=c
$$

Substituting the velocity distribution into it and neglecting the mass force, the pressure distribution in the flow field is:

$$
p=-2 \rho\left(x^{2}+y^{2}\right)+c, c \text { is a constant. }
$$

