Introduction to Marine Hydrodynamics (NA235)
 (2014-2015, $2^{\text {nd }}$ Semester)

Assignment No. 3

(Eight problems, submitted on March $30^{\text {th }}, 2015$)

Problem 1: Consider two flows:
(a) $\left\{\begin{array}{l}v_{x}=1 \\ v_{y}=2\end{array}\right.$;
(b) $\left\{\begin{array}{l}v_{x}=4 x \\ v_{y}=-4 y\end{array}\right.$
(1) Determine if the flow (a) has the stream function ψ. If does, solve the stream function and plot graph of the stream function;
(2) Determine if the flow (b) has the velocity potential φ. If does, solve φ, and plot the equipotential lines.

Problem 2: Consider a plane flow field $v_{x}=1+2 t, v_{y}=3+4 t$. Determine: (1) Streamline equation; (2) at $t=0$, the shapes of three streamlines passing points $(0,0),(0,1),(0,-1)$; (3) at $t=0$, the pathline equation of a fluid particle locating at point $(0,0)$.

Problem 3: The velocity components of an incompressible plane flow are
given as: $v_{x}=1-y, v_{y}=t$. Determine: (1) at $t=0$, the pathline equation of a particle passing point $(0,0) ;(2)$ at $t=1$, the streamline equation of a particle passing point $(0,0)$.

Problem 4: The velocity distribution of an incompressible plane flow is given as: $v_{x}=x^{2}+2 x-4 y, \quad v_{y}=-2 x y-2 y$. Determine if the flow: (1) satisfies the continuity equation; (2) is rotational; (3) has the velocity potential and stream function. If does, solve them.

Problem 5: Consider the flow between two parallel plates separated by distance $h=2 \mathrm{~m}$, the velocity distribution is: $v_{x}=10 \times\left(\frac{1}{4} h^{2}-y^{2}\right)(\mathrm{m} / \mathrm{s})$, $v_{y}=0$, axis x coincides with the center line of the two plates. Determine the stream function of the flow field and plot the streamlines in between the two plates.

Problem 6: The velocity potential of an incompressible plane potential flow is: $\varphi=0.04 x^{3}+a x y^{2}+b y^{3}$, units of x, y are m, unit of the potential function is $\mathrm{m}^{2} / \mathrm{s}$. (1) Determine the constants a, b; (2) Compute the pressure difference between points $(0,0)$ and $(3,4)$, assume the density of the fluid is $1300 \mathrm{~kg} / \mathrm{m}^{3}$.

Problem 7: Consider an incompressible plane flow, the module of its velocity vector is: $q=\sqrt{x^{2}+y^{2}}$. The streamline equation of the flow is: $y^{2}-x^{2}=c$, where c is a constant. Determine the velocity distribution of this flow.

Problem 8: The stream function is known as: $\psi=x^{2}-y^{2}$. (1) Determine velocity potential φ; (2) Neglect the mass force, determine the pressure distribution in the flow field.

