
Introduction to Marine Hydrodynamics 

(NA235)  
(2014-2015, 2nd Semester) 

 

Solutions to Assignment No.2 

(Eight problems, submitted on March 19th, 2015) 
 

 

Problem 1: Consider a fluid perform an axial rotation at a constant 

angular acceleration (ε0) like a rigid body. Express its position, velocity 

and acceleration from Lagrangian and Eulerian descriptions. 

 

Solution: 

(1) Lagrangian description 

Since this is a two-dimensional axial rotation, it is more convenient to 

solved the problem in polar coordinates. Consider the initial position of a 

fluid particle is 0 0( , )r  , its position can be expressed as: 
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The velocity is written as: 
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And the acceleration is: 
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In Cartesian coordinates, for a fluid particle locating at 0 0( , )x y  at an 

initial time, its position is expressed as: 
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The velocity is: 
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The acceleration is: 
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(2) Eulerian description 

In polar coordinates, the velocity is expressed as: 
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The acceleration is: 
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In Cartesian coordinates, the velocity is: 
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The acceleration is: 
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Problem 2: Assume three velocity components in a three-dimensional 

velocity field are: 
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Where a is a constant. Verify that the streamline of this flow is an 

intersection of two curved surfaces 2 consty z  and const
x

y
. 

 

Solution: The streamline equation is 
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i.e., ,
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Integrating these two equations to get: 

1ln ln lnx y C  , i.e., 1

x
C

y
  

22ln ln lny z C  , i.e.,  2
2y z C  

The streamline is thus an intersection of the two curved surfaces when C1 

and C2 are constant: 2 consty z  and const
x

y
. 

 

Problem 3: the velocity field of a flow is given as: 

 2 2( 1) ( 2)V x t i y t j   
  

 

Determine the pathline and streamline equations at time t=1 and at point 

(2, 1). 

 

Solution: (1) the differential equation of pathline is: 
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Integrating, yields: 

3
1

3
2

1
ln( 1)

3
1

ln( 2)
3

x t C

y t C

  

  
 

Subtracting the second equation from the first one:   



ln( 1) ln( 2) lnx y C     

i.e., 1 ( 2)x C y    

Substituting 2x  , 1y   into the equation, we get: C=1 

So the pathline equation at (2, 1) is: 1x y   

 

(2) The streamline equation is: 
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Eliminating t2 and integrating, yields: 

ln( 1) ln( 2) lnx y C     

i.e., 1 ( 2)x C y    

Substituting 2x  , 1y   into the equation, we get: C=1 

So the streamline equation at (2, 1) is: 1x y   

 

Problem 4: The velocity profile in a flow field is given as:  
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(1) Is the flow steady? (2) Determine the acceleration of the fluid particle 

through a field position (1, 1, 1). 

 

Solution:  

(1) u, v are dependent on time, therefore the flow is unsteady. 



(2) The acceleration in the flow field is: 
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Substituting 1x , 1y  , 1z  into the equation above, yields: 
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Problem 5: Verify that the acceleration field of an irrotational flow is a 

potential field. 

 

Solution1:  

Assume the velocity field is ( , , , )V x y z t


 and the acceleration field is: 
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For an irrotational flow, 0V  
 

, thus: 

2

( )
2

DV V V

Dt t


 


  
 

The curl of the equation above is: 
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An irrotational flow is a potential flow, so the acceleration field of an 

irrotational flow is a potential field. 

 

Solution2:  

The acceleration field of an irrotational flow is: 
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This means the acceleration of an irrotational flow is the gradient of a 

scalar function, thus this scalar function is the acceleration potential 

function. 

 

Problem 6: Assume the velocity fields of two flows are:  
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Where Ω is a constant, and 2 2 2r x y  . (1) Generate the streamline 

equations of these two flows; (2) Is the flow rotational or irrotational? 



Determine the velocity potential of the irrotational flow. 

 

Solution:  

(a) 0V yi xj k   
  

, its streamline equation is: 
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Thus, 0dz  , i.e., 1z C , xdx ydy    

Integrating, yields: 2 2x y C   

The streamlines are a series of concentric circles. 
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The flow is rotational. The angular velocity in z-direction is Ω. 

 

(b) 2 2/ / 0V y r i x r j k   
  

, its streamline equation is: 

2 2/ / 0

dx dy dz

y r x r
 

 
 

Thus, 0dz  , i.e., 1z C , 2 2
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Eliminating 2/ r  and integrating, yields: 2 2x y C   

The streamlines are the same as (a). 
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, so the flow is irrotational. 

Integrating over (0, 0) (0, ) ( , )y x y  , the velocity potential is : 
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Problem 7: The velocity profile of a flow is given as:  
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Where a is a constant. (1) Generate the streamline equation and plot the 

streamlines; (2) Is the flow rotational? If it is irrotational, determine the 

velocity potential function and plot the equipotential lines.   

 

Solution: 

(1) The streamline equation is: 
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Eliminating 2 2( )a y x , yields: xdx ydy  

Integrating: 2 2x y C   

If C is set to various values, we get a family of streamlines (hyperbolas). 



From the streamline equation, it can be noted that the straight line 

y x    is the asymptote of the streamlines. 

The direction of the streamline can be determined from the velocity 

distribution 2 2 2 2( ),  ( )   u ay y x v ax y x  

For 0y  , if | | | |y x , 0u  ; if | | | |y x , 0u  ; 

For 0y  , if | | | |y x , 0u  ; if | | | |y x , 0u  . 
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, so the flow rotational, there is no velocity potential. 

 

Problem 8: Consider a viscous fluid flows through the surface of a flat 

plate. The velocity profile near the plate is given as: 0 sin
2

y
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 , where 



u0, a are constant, y is the distance to the plate. Determine the strain rates 

on the plate.   

 

Solution:  

From the velocity profile, the strain rates on the plate (y=0) are: 
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