Introduction to Marine Hydrodynamics (NA235)
 (2014-2015, ${ }^{\text {nd }}$ Semester)

Solutions to Assignment No. 2

(Eight problems, submitted on March $19^{\text {th }}, 2015$)

Problem 1: Consider a fluid perform an axial rotation at a constant angular acceleration $\left(\varepsilon_{0}\right)$ like a rigid body. Express its position, velocity and acceleration from Lagrangian and Eulerian descriptions.

Solution:

(1) Lagrangian description

Since this is a two-dimensional axial rotation, it is more convenient to solved the problem in polar coordinates. Consider the initial position of a fluid particle is $\left(r_{0}, \theta_{0}\right)$, its position can be expressed as:

$$
\begin{aligned}
& r=r_{0} \\
& \theta=\theta_{0}+\frac{1}{2} \varepsilon_{0} t^{2}
\end{aligned}
$$

The velocity is written as:

$$
\begin{aligned}
& v_{r}=\frac{\partial r}{\partial t}=\frac{\partial r_{0}}{\partial t}=0 \\
& v_{\theta}=r \frac{\partial \theta}{\partial t}=r_{0} \varepsilon_{0} t
\end{aligned}
$$

And the acceleration is:

$$
\begin{aligned}
& a_{r}=-\frac{v_{\theta}^{2}}{r}=-\frac{1}{r_{0}}\left(r_{0} \varepsilon_{0} t\right)^{2}=-r_{0} \varepsilon_{0}^{2} t^{2} \\
& a_{\theta}=\frac{\partial v_{\theta}}{\partial t}=r_{0} \varepsilon_{0}
\end{aligned}
$$

In Cartesian coordinates, for a fluid particle locating at $\left(x_{0}, y_{0}\right)$ at an initial time, its position is expressed as:

$$
\begin{aligned}
& x=r \cos \theta=r_{0} \cos \left(\theta_{0}+\frac{1}{2} \varepsilon_{0} t^{2}\right) \\
& y=r \sin \theta=r_{0} \sin \left(\theta_{0}+\frac{1}{2} \varepsilon_{0} t^{2}\right)
\end{aligned}
$$

Where $r_{0}=\sqrt{x_{0}^{2}+y_{0}^{2}}, \quad \tan \theta_{0}=\frac{y_{0}}{x_{0}}$

The velocity is:

$$
\begin{aligned}
& u=\frac{\partial x}{\partial t}=-r_{0} \varepsilon_{0} t \sin \left(\theta_{0}+\frac{1}{2} \varepsilon_{0} t^{2}\right) \\
& v=\frac{\partial y}{\partial t}=r_{0} \varepsilon_{0} t \cos \left(\theta_{0}+\frac{1}{2} \varepsilon_{0} t^{2}\right)
\end{aligned}
$$

The acceleration is:

$$
\begin{aligned}
& a_{x}=\frac{\partial u}{\partial t}=-r_{0} \varepsilon_{0} \sin \left(\theta_{0}+\frac{1}{2} \varepsilon_{0} t^{2}\right)-r_{0} \varepsilon_{0}^{2} t^{2} \cos \left(\theta_{0}+\frac{1}{2} \varepsilon_{0} t^{2}\right) \\
& a_{y}=\frac{\partial v}{\partial t}=r_{0} \varepsilon_{0} \cos \left(\theta_{0}+\frac{1}{2} \varepsilon_{0} t^{2}\right)-r_{0} \varepsilon_{0}^{2} t^{2} \sin \left(\theta_{0}+\frac{1}{2} \varepsilon_{0} t^{2}\right)
\end{aligned}
$$

(2) Eulerian description

In polar coordinates, the velocity is expressed as:

$$
\begin{aligned}
& v_{r}=0 \\
& v_{\theta}=r \varepsilon_{0} t
\end{aligned}
$$

The acceleration is:

$$
\begin{aligned}
& a_{r}=\frac{D v_{r}}{D t}+\frac{v_{\theta}^{2}}{r}=\frac{\partial v_{r}}{\partial t}+v_{r} \frac{\partial v_{r}}{\partial r}+v_{\theta} \frac{\partial v_{r}}{r \partial \theta}+\frac{v_{\theta}^{2}}{r}=r \varepsilon_{0}^{2} t^{2} \\
& a_{\theta}=\frac{D v_{\theta}}{D t}+\frac{v_{r} v_{\theta}}{r}=\frac{\partial v_{\theta}}{\partial t}+v_{r} \frac{\partial v_{\theta}}{\partial r}+v_{\theta} \frac{\partial v_{\theta}}{r \partial \theta}+\frac{v_{r} v_{\theta}}{r}=r \varepsilon_{0}
\end{aligned}
$$

In Cartesian coordinates, the velocity is:

$$
\begin{aligned}
& u=r \varepsilon_{0} t \cdot(-\sin \theta)=-r \varepsilon_{0} t \cdot \frac{y}{r}=-\varepsilon_{0} y t \\
& v=r \varepsilon_{0} t \cdot \cos \theta=r \varepsilon_{0} t \cdot \frac{x}{r}=\varepsilon_{0} x t
\end{aligned}
$$

The acceleration is:

$$
\begin{aligned}
& a_{x}=\frac{D u}{D t}=\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=-\varepsilon_{0} y-\varepsilon_{0}^{2} t^{2} x \\
& a_{y}=\frac{D v}{D t}=\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}=\varepsilon_{0} x-\varepsilon_{0}^{2} t^{2} y
\end{aligned}
$$

Problem 2: Assume three velocity components in a three-dimensional velocity field are:

$$
\begin{aligned}
& u=a x \\
& v=a y \\
& w=-2 a z
\end{aligned}
$$

Where a is a constant. Verify that the streamline of this flow is an intersection of two curved surfaces $y^{2} z=\mathrm{const}$ and $\frac{x}{y}=\mathrm{const}$.

Solution: The streamline equation is $\frac{d x}{a x}=\frac{d y}{a y}=\frac{d z}{-2 a z}$

$$
\text { i.e., } \frac{d x}{a x}=\frac{d y}{a y}, \quad \frac{d y}{a y}=\frac{d z}{-2 a z}
$$

Integrating these two equations to get:

$$
\begin{aligned}
& \ln x=\ln y+\ln C_{1}, \text { i.e., } \frac{x}{y}=C_{1} \\
& 2 \ln y+\ln z=\ln C_{2}, \text { i.e., } y^{2} z=C_{2}
\end{aligned}
$$

The streamline is thus an intersection of the two curved surfaces when C_{1} and C_{2} are constant: $y^{2} z=$ const and $\frac{x}{y}=$ const.

Problem 3: the velocity field of a flow is given as:

$$
\vec{V}=(x+1) t^{2} \vec{i}+(y+2) t^{2} \vec{j}
$$

Determine the pathline and streamline equations at time $t=1$ and at point $(2,1)$.

Solution: (1) the differential equation of pathline is:

$$
\begin{aligned}
& \frac{d x}{d t}=u=(x+1) t^{2} \\
& \frac{d y}{d t}=v=(y+2) t^{2}
\end{aligned}
$$

Integrating, yields:

$$
\begin{aligned}
& \ln (x+1)=\frac{1}{3} t^{3}+C_{1} \\
& \ln (y+2)=\frac{1}{3} t^{3}+C_{2}
\end{aligned}
$$

Subtracting the second equation from the first one:

$$
\begin{gathered}
\ln (x+1)-\ln (y+2)=\ln C \\
\text { i.e., } x+1=C(y+2)
\end{gathered}
$$

Substituting $x=2, y=1$ into the equation, we get: $C=1$
So the pathline equation at $(2,1)$ is: $x-y=1$
(2) The streamline equation is:

$$
\frac{d x}{(x+1) t^{2}}=\frac{d y}{(y+2) t^{2}}
$$

Eliminating t_{2} and integrating, yields:

$$
\begin{gathered}
\ln (x+1)=\ln (y+2)+\ln C \\
\text { i.e., } x+1=C(y+2)
\end{gathered}
$$

Substituting $x=2, y=1$ into the equation, we get: $C=1$
So the streamline equation at $(2,1)$ is: $x-y=1$

Problem 4: The velocity profile in a flow field is given as:

$$
\left\{\begin{array}{c}
u=y z+t \\
v=x z-t \\
w=x y
\end{array}\right.
$$

(1) Is the flow steady? (2) Determine the acceleration of the fluid particle through a field position $(1,1,1)$.

Solution:

(1) u, v are dependent on time, therefore the flow is unsteady.
(2) The acceleration in the flow field is:

$$
\begin{aligned}
& a_{x}=\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}=1+(x z-t) z+x y^{2} \\
& a_{y}=\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}=-1+(y z+t) z+x^{2} y \\
& a_{z}=\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}=(y z+t) y+(x z-t) x
\end{aligned}
$$

Substituting $x=1, y=1, z=1$ into the equation above, yields:

$$
\begin{aligned}
& a_{x}=3-t \\
& a_{y}=1+t \\
& a_{z}=2
\end{aligned}
$$

Problem 5: Verify that the acceleration field of an irrotational flow is a potential field.

Solution1:

Assume the velocity field is $\vec{V}(x, y, z, t)$ and the acceleration field is:

$$
\begin{aligned}
\frac{D \vec{V}}{D t} & =\frac{\partial \vec{V}}{\partial t}+(\vec{V} \cdot \nabla) \vec{V} \\
& =\frac{\partial \vec{V}}{\partial t}+\nabla\left(\frac{\vec{V}^{2}}{2}\right)-\vec{V} \times \nabla \times \vec{V}
\end{aligned}
$$

For an irrotational flow, $\vec{\Omega}=\nabla \times \vec{V}=0$, thus:

$$
\frac{D \vec{V}}{D t}=\frac{\partial \vec{V}}{\partial t}+\nabla\left(\frac{\vec{V}^{2}}{2}\right)
$$

The curl of the equation above is:

$$
\begin{aligned}
\nabla \times \frac{D \vec{V}}{D t} & =\nabla \times \frac{\partial \vec{V}}{\partial t}+\nabla \times \nabla\left(\frac{\vec{V}^{2}}{2}\right) \\
& =\frac{\partial}{\partial t}(\nabla \times \vec{V})+\nabla \times \nabla\left(\frac{\vec{V}^{2}}{2}\right) \\
& =0
\end{aligned}
$$

An irrotational flow is a potential flow, so the acceleration field of an irrotational flow is a potential field.

Solution2:

The acceleration field of an irrotational flow is:

$$
\begin{aligned}
\frac{D \vec{V}}{D t} & =\frac{\partial \vec{V}}{\partial t}+\nabla\left(\frac{\vec{V}^{2}}{2}\right)-\vec{V} \times \nabla \times \vec{V} \\
& =\frac{\partial}{\partial t}(\nabla \varphi)+\nabla\left(\frac{\vec{V}^{2}}{2}\right) \\
& =\nabla\left(\frac{\partial \varphi}{\partial t}\right)+\nabla\left(\frac{\vec{V}^{2}}{2}\right) \\
& =\nabla\left(\frac{\partial \varphi}{\partial t}+\frac{\vec{V}^{2}}{2}\right)
\end{aligned}
$$

This means the acceleration of an irrotational flow is the gradient of a scalar function, thus this scalar function is the acceleration potential function.

Problem 6: Assume the velocity fields of two flows are:
(a) $\vec{V}=(-\Omega y, \Omega x, 0)$
(b) $\vec{V}=\left(-\Omega y / r^{2}, \Omega x / r^{2}, 0\right)$

Where Ω is a constant, and $r^{2}=x^{2}+y^{2}$. (1) Generate the streamline equations of these two flows; (2) Is the flow rotational or irrotational?

Determine the velocity potential of the irrotational flow.

Solution:

(a) $\vec{V}=-\Omega y \vec{i}+\Omega x \vec{j}+0 \vec{k}$, its streamline equation is:

$$
\frac{d x}{-\Omega y}=\frac{d y}{\Omega x}=\frac{d z}{0}
$$

Thus, $d z=0$, i.e., $\quad z=C_{1}, \quad \Omega x d x=-\Omega y d y$

Integrating, yields: $x^{2}+y^{2}=C$

The streamlines are a series of concentric circles.
$\frac{\partial w}{\partial y}=0=\frac{\partial v}{\partial z}, \frac{\partial u}{\partial z}=0=\frac{\partial w}{\partial x}, \frac{\partial v}{\partial x}=\Omega, \frac{\partial u}{\partial y}=-\Omega$, thus:

$$
\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=\Omega-(-\Omega)=2 \Omega
$$

The flow is rotational. The angular velocity in z-direction is Ω.
(b) $\vec{V}=-\Omega y / r^{2} \vec{i}+\Omega x / r^{2} \vec{j}+0 \vec{k}$, its streamline equation is:

$$
\frac{d x}{-\Omega y / r^{2}}=\frac{d y}{\Omega x / r^{2}}=\frac{d z}{0}
$$

Thus, $d z=0$, i.e., $z=C_{1}, \quad \frac{\Omega x}{r^{2}} d x=\frac{-\Omega y}{r^{2}} d y$

Eliminating Ω / r^{2} and integrating, yields: $x^{2}+y^{2}=C$
The streamlines are the same as (a).
$\frac{\partial w}{\partial y}=0=\frac{\partial v}{\partial z}, \frac{\partial u}{\partial z}=0=\frac{\partial w}{\partial x}, \frac{\partial v}{\partial x}=\frac{\Omega\left(y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{\partial u}{\partial y}$, so the flow is irrotational. Integrating over $(0,0) \rightarrow(0, y) \rightarrow(x, y)$, the velocity potential is :

$$
\begin{aligned}
\varphi & =\int \frac{-\Omega y}{r^{2}} d x+\int \frac{\Omega x}{r^{2}} d y \\
& =-\Omega \int_{0}^{x} \frac{y}{x^{2}+y^{2}} d x+\Omega \int_{0}^{y} \frac{0}{0+y^{2}} d y \\
& =-\Omega y\left(\frac{1}{y} \arctan \frac{x}{y}\right)+C \\
& =-\Omega \arctan \frac{x}{y}+C
\end{aligned}
$$

Problem 7: The velocity profile of a flow is given as:

$$
\left\{\begin{array}{l}
u=a y\left(y^{2}-x^{2}\right) \\
v=a x\left(y^{2}-x^{2}\right)
\end{array}\right.
$$

Where a is a constant. (1) Generate the streamline equation and plot the streamlines; (2) Is the flow rotational? If it is irrotational, determine the velocity potential function and plot the equipotential lines.

Solution:

(1) The streamline equation is:

$$
\frac{d x}{a y\left(y^{2}-x^{2}\right)}=\frac{d y}{a x\left(y^{2}-x^{2}\right)}
$$

Eliminating $a\left(y^{2}-x^{2}\right)$, yields: $x d x=y d y$
Integrating: $x^{2}-y^{2}=C$
If C is set to various values, we get a family of streamlines (hyperbolas).

From the streamline equation, it can be noted that the straight line $y= \pm x$ is the asymptote of the streamlines.

The direction of the streamline can be determined from the velocity distribution $u=a y\left(y^{2}-x^{2}\right), v=a x\left(y^{2}-x^{2}\right)$

For $y>0$, if $|y|>|x|, u>0$; if $|y|<|x|, u<0$;
For $y<0$, if $|y|>|x|, u<0$; if $|y|<|x|, u>0$.

(2) $\begin{aligned} & \frac{\partial v}{\partial x}=\frac{\partial}{\partial x} a x\left(y^{2}-x^{2}\right)=a\left(y^{2}-x^{2}\right)-2 a x^{2}=a\left(y^{2}-3 x^{2}\right) \\ & \frac{\partial u}{\partial y}=\frac{\partial}{\partial y} a y\left(y^{2}-x^{2}\right)=a\left(y^{2}-x^{2}\right)+2 a y^{2}=a\left(3 y^{2}-x^{2}\right)\end{aligned}$
$\frac{\partial v}{\partial x} \neq \frac{\partial u}{\partial y}$, so the flow rotational, there is no velocity potential.

Problem 8: Consider a viscous fluid flows through the surface of a flat plate. The velocity profile near the plate is given as: $u=u_{0} \sin \frac{\pi y}{2 a}$, where
u_{0}, a are constant, y is the distance to the plate. Determine the strain rates on the plate.

Solution:

From the velocity profile, the strain rates on the plate $(y=0)$ are:

$$
\begin{aligned}
& \varepsilon_{x x}=\left.\frac{\partial u}{\partial x}\right|_{y=0}=0, \quad \varepsilon_{y y}=\left.\frac{\partial v}{\partial y}\right|_{y=0}=0, \quad \varepsilon_{z z}=\left.\frac{\partial w}{\partial z}\right|_{y=0}=0, \\
& \varepsilon_{y z}=\left.\frac{1}{2}\left(\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}\right)\right|_{y=0}=0, \quad \varepsilon_{z x}=\left.\frac{1}{2}\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right)\right|_{y=0}=0, \\
& \varepsilon_{x y}=\left.\frac{1}{2}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)\right|_{y=0}=\left.\frac{1}{2} u_{0} \cos \left(\frac{\pi y}{2 a}\right) \cdot \frac{\pi}{2 a}\right|_{y=0}=\frac{\pi u_{0}}{4 a}
\end{aligned}
$$

