Introduction to Marine Hydrodynamics (NA235)
 (2014-2015, $2^{\text {nd }}$ Semester)

Assignment No. 2

(Eight problems, to be submitted on March $19^{\text {th }}$, 2015)

Problem 1: Consider an axial rotation of a fluid at a constant angular acceleration (ε_{0}) like a rigid body. Express its position, velocity and acceleration from Lagrangian and Eulerian descriptions.

Problem 2: Assume three velocity components in a three-dimensional velocity field are:

$$
\begin{aligned}
& u=a x \\
& v=a y \\
& w=-2 a z
\end{aligned}
$$

Where a is a constant. Verify that the streamline of this flow is an intersection of two curved surfaces $y^{2} z=$ const and $\frac{x}{y}=$ const.

Problem 3: the velocity field of a flow is given as:

$$
\vec{V}=(x+1) t^{2} \vec{i}+(y+2) t^{2} \vec{j}
$$

Determine the pathline and streamline equations at time $t=1$ and at point $(2,1)$.

Problem 4: The velocity profile in a flow field is given as:

$$
\left\{\begin{array}{c}
u=y z+t \\
v=x z-t \\
w=x y
\end{array}\right.
$$

(1) Is the flow steady? (2) Determine the acceleration of the fluid particle through a field position $(1,1,1)$.

Problem 5: Verify that the acceleration field of an irrotational flow is a potential field.

Problem 6: Assume the velocity fields of two flows are:
(a) $\vec{V}=(-\Omega y, \Omega x, 0)$
(b) $\vec{V}=\left(-\Omega y / r^{2}, \Omega x / r^{2}, 0\right)$

Where Ω is a constant, and $r^{2}=x^{2}+y^{2}$. (1) Generate the streamline equations of these two flows; (2) Is the flow rotational or irrotational? Determine the velocity potential of the irrotational flow.

Problem 7: The velocity profile of a flow is given as:

$$
\left\{\begin{array}{l}
u=a y\left(y^{2}-x^{2}\right) \\
v=a x\left(y^{2}-x^{2}\right)
\end{array}\right.
$$

Where a is a constant. (1) Generate the streamline equation and plot the streamlines; (2) Is the flow rotational? If it is irrotational, determine the velocity potential function and plot the equipotential lines.

Problem 8: Consider a viscous fluid flows through the surface of a flat plate. The velocity profile near the plate is given as: $u=u_{0} \sin \frac{\pi y}{2 a}$, where u_{0}, a are constant, y is the distance to the plate. Determine the strain rates on the plate.

