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Boundary Layer Theory
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Viscous incompressible steady flow
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Length (L), Velocity (U), Pressure (P) 
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9.1   Concept of Boundary Layer
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For most real flow, Re is large.

It seems that 2 *1
e

0
R

   
 

V1 0
Re



For high Re (≈10６～10９), viscous force is far more 
less than inertial force. If we completely neglect viscous 
force, the N-S equation reduces to Euler equation

1 p


  V V g  

but it is not able to describe viscous flow any more. 

9.1   Concept of Boundary Layer
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Euler equation only includes terms of 1st order derivatives, 
while N-S equation involves terms of 2nd order derivatives as 
well.

Euler equation is a 1st order equation for perfect flow, it is not 
able to fulfill no-slip condition on wall, which corresponds to 2 
equations. 

Therefore, simply neglecting viscous terms will be not able to 
obtain viscous flow near wall, as it can not fulfill no-slip
condition. 

How can the large Re flow be solved ?

Until 1904, when German scientist Prandtl proposed 
Boundary theory, this difficulty had been reasonably solved . 

9.1   Concept of Boundary Layer
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In 1904, Prandtl proposed Boundary Layer concept. 

For fluid with small viscosity, e.g. air and water, Reynolds 

number is generally very large. Effect of viscosity is limited 

in a thin layer near the wall, away from it viscosity can be 

fully neglected, where flow can be approximately treated 

as ideal potential flow. The thin layer, where viscosity should 

be taken into account, is called boundary layer.

In this way, flow with large Reynolds number is 

divided into three different regions – inner boundary layer, 

outer potential flow and the rear wake. 

9.1   Concept of Boundary Layer
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9.1   Concept of Boundary Layer
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I Boundary Layer

Outer Boundary of 
Boundary Layer

Outer Boundary of 
Boundary Layer

II Wake

9.1   Concept of Boundary Layer
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When viscous fluid flows past a body, due to the 
effect of fluid viscosity, there exists a thin layer 
(boundary layer) near the wall, where velocity 
dramatically varies. E.g., for flow past a horizontal plate, 
beside the plate a boundary layer forms. 

9.1   Concept of Boundary Layer

Laminar Sublayer

Turbulent Boundary Layer

Potential Flow
Transition 

Region
Laminar 

Boundary 
Layer
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9.2  Description of Boundary Layer

Boundary Layer Thickness ---- δ

Boundary layer thickness, δ, is defined as the distance 
from the wall (with zero velocity) to the place with velocity of 
99% times the one of potential flow. δ increases downstream, 
because viscous friction reduces flow velocity, only farther away 
from the wall velocity could reach the 99% potential velocity there.  
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Flow State of Boundary Layer

According to tests, similar to pipe flow, in boundary layer
there also exist different flow states, laminar flow and turbulent
flow. A laminar boundary layer means flow in the layer is pure
laminar flow. A turbulent boundary layer specifies pure
turbulent flow. There is a transitional region, where both laminar
flow and turbulent flow co-exists.

510)0.5~5.3(  


K

Kx
xVRe

Re V x



Critical Reynolds number

Reynolds number, Re, is employed as a criterion to judge
flow state of boundary layer. In evaluation of Re, distance, x,
measured from the front edge is employed

9.2  Description of Boundary Layer
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In the starting area, very near to the leading edge, there
exists a laminar boundary layer region. With the increase of
distance, it finally develops to turbulent boundary layer. In
between, there is a transitional region. The beginning point of the
transitional region is called transitional point.

9.2  Description of Boundary Layer
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Even in transitional and turbulent region, due to the effect of 
the plate there still exists a very thin laminar flow near the wall. 
This laminar layer at the bottom of boundary layer is called 
laminar sublayer. 

9.2  Description of Boundary Layer

层流边界层 过渡区域 湍流边界层

粘性底层

Thickness related to Re

Laminar Transitional Turbulent
Laminar sublayer
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• Very thin comparing with the length of body, i.e., .

• Large velocity gradient along boundary thickness

• Boundary thickness increases downstream.

• Pressure penetrates boundary layer due to small 
thickness.

• Viscous force is comparable with inertial force.

• In boundary layer, both laminar flow and turbulent flow 
are possible and may co-exist.

Characteristics of Boundary Layer

9.2  Description of Boundary Layer

L 
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9.3  Governing Equations of 2d 
Laminar Boundary Layer

Assumptions: 2d flow, incompressible, steady, no body force.
N-S equation is written as
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Based on characteristics of boundary layer, we shall see N-S 
equation can be greatly simplified. A boundary layer equation for 
laminar boundary layer will be derived by careful dimension analysis. 
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Consider a half infinitely long flat plate. The incoming flow is of 
speed      , a boundary layer forms near the plate with thickness,      , 
at a location away from the leading edge of distance    . Choose      
and       as fundamental quantities, we can obtain following 
dimensionless quantities

Dimension Analysis

V 


 V

9.3  Governing Equations of 2d 
Laminar Boundary Layer

Laminar boundary layer
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Using these dimensionless quantities, N-S equation becomes

Rel
V




where

is Reynolds 
number.

9.3  Governing Equations of 2d 
Laminar Boundary Layer
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As mentioned above, is small relative to      , i.e., <<    

or .  And                ,               and  .

Then,            ,            and             .  Therefore, we have

From continuity, we have

9.3  Governing Equations of 2d 
Laminar Boundary Layer
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So ,  therefore~yv  
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In this way, only one viscous term is left. It is the term

Based on the above dimension analysis, inertial term in the 2nd

equation is relatively small and can be neglected. The following 
terms are also small and can be neglected as well.

9.3  Governing Equations of 2d 
Laminar Boundary Layer
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According to above dimension analysis, N-S equation is greatly 
simplified. Below is the result, namely boundary layer equations

9.3  Governing Equations of 2d 
Laminar Boundary Layer
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So, boundary layer equation becomes
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Bernoulli’s equation on the outer boundary
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9.3  Governing Equations of 2d 
Laminar Boundary Layer
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Then, boundary layer equation is further simplified
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For half infinitely long plate in uniform flow with favorable pressure 
gradient, velocity on outer boundary is constant, that is

d 0
d
V
x
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9.3  Governing Equations of 2d 
Laminar Boundary Layer
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Boundary conditions of the boundary layer equation

On y = 0 

2

2

0

d1
d

x y

x

v v

v VV
y x




 


 



On y = δ

 

 

2

2 0

x

n
x x x

n

v V

v v v
y y y



  
  

  

9.3  Governing Equations of 2d 
Laminar Boundary Layer
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9.4  Blasius Solution

H. Blasius (1908)

Assumptions: Half infinite plate, 
incompressible, steady, laminar 
flow, no body force, no pressure 
gradient.
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Boundary Layer 
Equation

Similar 
Velocity Profile 3rd Order ODE
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Similar Velocity Profile regardless of the Location
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9.4  Blasius Solution

It is in the sense that though the scale factors of velocity and 
vertical distance could vary with location, but relation of scaled 
velocity to scaled distance is the same for any cross-section.

Introduce stream function 

Boundary Layer Equation
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9.4  Blasius Solution

Blasius choose     and       as scale factors for distance and velocity. V 
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L. Howarth (1938) gave out a numeric result with good accuracy.

9.4  Blasius Solution

Write          as a power 
series of       at point           . 
Coefficients are determined 
from the boundary condition.

( )f 
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Vy
x




 )(f ( ) xvf
V




  )(f  Vy
x




 )(f   xvf
V




  )(f 

0.0 0 0 0.33206 4.8 3.08534 0.98779 0.02187

0.4 0.02656 0.13277 0.33147 5.0 3.28329 0.99155 0.01591

0.8 0.10611 0.26471 0.32739 5.2 3.48189 0.99425 0.01134

1.2 0.23895 0.39378 0.31659 5.6 3.88031 0.99748 0.00543

1.6 0.42023 0.51676 0.29667 6.0 4.27964 0.99898 0.00240

2.0 0.65003 0.62977 0.26675 6.4 4.67938 0.99961 0.00098

2.4 0.92230 0.72899 0.22809 6.8 5.07928 0.99987 0.00037

2.8 1.23099 0.81152 0.18401 7.2 5.47925 0.99996 0.00013

3.2 1.56911 0.87609 0.13913 7.6 5.87924 0.99999 0.00004

3.6 1.92954 0.92333 0.09809 8.0 6.27923 1.00000 0.00001

4.0 2.30576 0.95552 0.06424 8.4 6.67923 1.00000 0.00000

4.4 2.69238 0.97587 0.03897 8.8 7.07923 1.00000 0.00000

9.4  Blasius Solution
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1. Velocity Profile of Blasius Solution
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9.4  Blasius Solution
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2. Thickness of Boundary Layer
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3. Shear Stress
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9.4  Blasius Solution

Proportional to        , agree well with the qualitative analysis.x
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4. Drag and Drag Coefficient

2

0

0.664d
Re

L

f
L

V LD x   

1 2
2

1.328
Re

f
f

L

D
C

V L 

 

Drag Coefficient

5(100 Re 5 10 )L  

2nd Order Approximation (Yung-Huai Kuo)

1.328 4.12
ReRef

LL

C   5(1 Re 5 10 )L  

郭永怀（1909－1968）

9.4  Blasius Solution
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5. Remarks on Blasius Solution

Validation

For finite length plate, it was validated by wind tunnel
test carried by Nikuradse (1942).

Application

• Estimation of frictional drag, 
• Calibration of velocity probe,
• Verification of analysis method and code of boundary layer   

solution, 
• Expression of laminar boundary layer at the front edge of 

an object in solution of turbulent boundary layer.

9.4  Blasius Solution


