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In solution of N-S equation, for special cases, some terms may be of 
very small value relative to other terms, and less important, and become 
negligible. While N-S equation is written in a dimensionless form, as will 
be given later, we can simply determine whether a term is negligible or 
not. As an example, we look at an unsteady flow past a body. 

U

L

Body

We choose four Characteristic quantities below.
L – length of the body; U – uniform speed; 
T – time; P – pressure at infinity.

8.4  Simplification of N-S Equation
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In terms of these characteristic scales, physical quantities can be 
non-dimensionalized. 
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And N-S equation is rewritten in these dimensionless quantities.

8.4  Simplification of N-S Equation
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Apparently, importance of each term in N-S equation is determined 
by the relative value in parentheses in front of each term. 
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8.4  Simplification of N-S Equation

Strouhal number 

Euler number

Reynolds number 

Froude number
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According to the above 4 dimensionless numbers, we can classify 
different categories and simplify N-S equation respectively. 

1)  Large Reynolds number flow (Re>>1)

8.4  Simplification of N-S Equation

Inertial Force 
Viscous Force

ULRe




Re>>1                       viscous force is negligible

N-S equation is simplified to Euler’s equation
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2)  Small Strouhal number Flow (St<<1)

8.4  Simplification of N-S Equation

Local derivative 
Convective derivative

LSt
UT

 

St<<1                       unsteady term is negligible
nearly steady flow
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3)  Small Reynolds number Flow (Re<<1)

8.4  Simplification of N-S Equation

Inertial Force 
Viscous Force

ULRe




Re<<1                  nonlinear convective term  is negligible
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It is a linear equation. It may be solved analytically, provided 
initial and boundary conditions are simple enough.
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8.5  Some Simple Viscous Flows

Generally, solution of N-S equation shows some difficulty. Most 
of them have to be solved by means of numerical methods. But for a 
few very simple flows, analytical solutions have been obtained from the
simplified N-S equation derived by dimension analysis and/or
physical investigations. 

Hereafter we shall introduce a few classical and well known 
simple viscous flows. For simplicity we consider steady flows.
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Case (1)  2 Dimensional Plane Poiseuille-Couette Flow

u(y)

y

Bottom plate fixes on the earth.

Upper plate moves forward with a constant speed U.

x

y = 0

y = h

/p x 
From physical point of view, this flow is driven by 3 forces: (1) 

upper plate motion; (2) pressure gradient along x-axis,                 ; 
(3) the body force.

8.5  Some Simple Viscous Flows
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Since upper plate is horizontally moving at a constant speed and 
the lower plate horizontally fixes on the earth, so fluid between the 
two plates will horizontally move with speed not varying along x-axis. 
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This velocity distribution may be used to simplify N-S equation.

( )u u y0v 

8.5  Some Simple Viscous Flows
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Now all convective terms have disappeared. For any other 
unidirectional flow, where velocities are all parallel, treatment will be 
similar. 
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By integrating equation (1) twice for y, variation of velocity with y is 
further derived. 

From equation (2), the y-component equation, pressure is expressed 
as

8.5  Some Simple Viscous Flows
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The no-slip conditions on the upper and bottom plates say

( 0) 0  (on the bottom plate)
( )  (on the upper plate)

u y
u y h U

 
 

Applying them to the velocity expression, constants C1 and C2 are 
determined.
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Therefore, we finally obtain the velocity distribution

8.5  Some Simple Viscous Flows

Poiseuille Flow Couette Flow
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Shearing stress

constant stresslinear stress distribution due to due to Couette flowPoiseuille flow,
zero stress at the centerline
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If body force vanishes, and denote , velocity 

distribution becomes
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This is the Couette flow, where pressure gradient vanishes, 
only the upper plate applies a force to drive the flow. It results a 
linear velocity distribution. 
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This flow is driven by a favorable pressure gradient (opposed to 
an adverse pressure gradient), where pressure gradually decreases 
along the flow. Velocities in the flow field direct to the opposite 
direction of the pressure gradient. 

8.5  Some Simple Viscous Flows
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 limit pressure gradient without back flow

8.5  Some Simple Viscous Flows

Velocity distribution along y is a parabola. At y=0, the parabola is 
tangent to the normal of the bottom plate. It corresponds to the 
largest adverse pressure gradient without backward flow area. 
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While the adverse pressure gradient is large enough, greater than the 
limit pressure gradient, towing force on the upper plate transmitted to the 
neighborhood of the bottom plate becomes weaker than the adverse 
pressure gradient, and under the action of the adverse pressure gradient 
fluid there becomes moving backward. It forms a back flow. 
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8.5  Some Simple Viscous Flows

In this case, contributions to Q due to adverse pressure gradient are 
balanced with those due to the upper plate motion.Then total volume rate 
through a vertical cross-section becomes zero. If P further decreases, P<-3, 
effect from adverse pressure gradient will be greater than the one from the 
upper plate motion, and volume rate will become negative, Q<0.
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As mentioned in the expression of u(y), this flow consists of two 
kinds of flows, Poiseuille flow and Couette flow.
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1) Poiseuille flow：Both plates are fixed, i.e., U = 0. The flow is

solely driven by the pressure gradient. 

Parabolic velocity pattern
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2) Couette flow：Pressure gradient along the flow is zero, 
the upper plate motion drive the flow.
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8.5  Some Simple Viscous Flows
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Case (2) Poiseuille flow in circular pipe

0, 0r zu u u  

8.5  Some Simple Viscous Flows

Fluid flows in a straight circular pipe. In a cylindrical coordinate 
system, since it is an axially-symmetric flow, velocity is independent on 
the polar angle    , i.e.               . In addition it is also a unidirectional 
flow as well. If the flow is driven by a pressure gradient,           , and 
denote velocity vector                   , we have 

 0  
dp dz

 , ,r zu u u
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Write down continuity equation

 zu
t




z
r

uu
r





zu u

r








z
z

uu
z





2

2 2

1

1 1                                            z z

p
z

u ur
r r r r







 



        

2

2
zu

z



 zg

 
 

  
dd d    

d d d
zu r pr

r r z
   
 

 1 rru
r r



1 u
r









0         ( )z
z z

u u u r
z


   


The z-component momentum equation becomes

8.5  Some Simple Viscous Flows
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By integrating the equation twice on r, expression of uz(r) is derived
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Applying no-slip condition on the pipe wall to it, and considering 
the physical requirement of finite flow speed, constants C1 and C2 are 
thus determined.
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Finally, velocity expression is obtained.
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The maximum velocity appears at the centerline of the pipe.

Flow inside a circular pipe Flow between two parallel plates

8.5  Some Simple Viscous Flows
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Volume rate
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Poiseuelle’s law: For flow inside a circular pipe driven by a constant 
pressure gradient, flow rate through a cross section is proportional to 
the pressure gradient and the 4th power of the pipe radius, but inversely 
proportional to the dynamic viscosity of the fluid. 

8.5  Some Simple Viscous Flows
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Average velocity over the cross-section
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For a circular pipe of length L, pressure drop between two ends is 
equal to the product of the constant pressure gradient and the length it 
experiences

 d / dp p z L  

/fh p g 
On the other hand,  pressure gradient can be expressed by cross-

sectional average velocity, and then Darcy-Weisbach equation is derived. 
It is an expression of the head loss due to friction

2

 
2f

L uh
D g



: Darcy friction factor. : Reynolds number.
64
Re

  Re Du




where D is the diameter of the circular 
pipe, D = 2R, or generally hydraulic 
diameter for non-circular cylinder. 

It is consumed by the fluid viscosity, and can be expressed as the 
head loss due to friction, i.e. the equivalent pressure head of the fluid

8.5  Some Simple Viscous Flows
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Case (3)  Flow past a sphere at small Reynolds number

According to dimension analysis, for flows with small Reynolds 
number, inertial force is negligible. This kind of flows is called Stokes 
flow, or creep flow, where both the size of the flow field and value of 
velocity are small. The flow inside a bearing clearance is an example. 
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After removing inertia forces from N-S equation, a simple Stokes 
equation results. 

8.5  Some Simple Viscous Flows
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As the figure shows, consider a uniform flow with velocity at 
infinity along x-axis flows past a fixed small sphere of radius      . 

V
0r

8.5  Some Simple Viscous Flows
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In spherical coordinate system, since the flow is axially symmetry with x-
axis, physical quantities will do not vary with the polar angle around x-axis. 
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Boundary conditions

at r = r0，    0 0, , 0rV r V r  

at infinity cos , sinrV V V V    

By use of variable separation method, we assume that the 
unknown velocity components and pressure be formally written as
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Substituting these expressions in Stokes equations, it derives a 
set of ordinary differential equations (or, simply ODE) on the 
unknown functions, f(r),  g(r) and h(r). 
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Accordingly, the boundary conditions become

       0 00, 0, ,f r g r f V g V      

From the above ODEs, an ODE on function  f is obtained.

   4 33 28 8 8 0r f r f rf f    
It can be immediately verified that following are four particular 
solutions of the above ODE.
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Then, general solution of function  f can be expressed as

  21 2
3 43

C Cf r C C r
r r

   

8.5  Some Simple Viscous Flows



Shanghai Jiao Tong University

Applying the general solution of f to Stokes equations, other 
two functions have general solutions

  21 2
3 43 2

2 2
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Satisfaction of the boundary conditions determines the four constants.
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Finally, substituting back to the expressions of velocity and 
pressure, we obtain the solution of the problem.
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According to the constitutive law, stresses can then be obtained.
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Since the flow is symmetry, we have
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On the sphere surface, stresses have expressions
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The resultant force will be parallel to the uniform flow, and of magnitude 
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