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Chapter 7
Water Waves
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For Airy wave, we need to determine three parameters, (4, k, ). In fact,
only two of them, (A4, k), need to be determined, since a dispersion relation
exists, that will be introduced soon later in this section.

17 = Acos(kx—at)

I.Airy wave is a 2-dimensional cosine function, known as
cosine wave, sine wave or linear sinusoidal wave.

A -- wave amplitude; H =2A -- wave height.
A -- wave length, the distance between two adjacent crests or troughs.

wave amplitude A

wave height H = 24

=528 [flosr
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2. k :the wave number

Let £ =0, Airy wave becomes simply a cosine function of x.

n= ACOS(kX) KX=27zN (nis an integer)

For n =1, it corresponds one wave form, that is, X = A , therefore

21

A

¢ A o
F\v/\\ > k = wavenumber = 21/\ L

k




7.4 Airy Wave

3. w :circular frequency

Let X =0, Airy wave becomes a cosine function of t.
n= ACOS( t) t=272zNn (nis an integer)

For n =1, it corresponds one period, t =T = 1/f, therefore

:2_72':272_1: where T:l

T

N - »
£\ /\\ > o= frequency = 2n/T [T], e.g. rad/sec
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7.4 Airy Wave

4. Phase velocity / Celerity ( ¢ or V), ): wave form moving velocity

Let’s look at a fixed position in space where at an instant a crest located at.
Then the crest moves forward. The duration until another crest arrives at that
point is just one wave period. During this period, we can see the wave form
moves forward just one wave length. So, velocity the wave form advances is
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Airy wave is also known as sinusoidal wave. It is expressed as
0,
n=Acos(kx—-ot)= Acos{k(x—?tﬂ = Acos[k(x—ct)]

o 2z/T A

where — —

=
k 2z/4 T

Phase velocity, wave length, wave period, wave frequency, circular
frequency and wave number related with each other as follows:




YFELAAY 7.4 Airy Wave

5. Dispersion relation: relation between circular frequency and wave number.

A coshk (y+h)
cosh kh

Velocity potential ¢ = 9a Sln(kX @ )

2
Free surface condition g % + 0" ¢ =0 (ony=0)
oy ot’

Now, substituting the velocity potential in the linearized free surface
condition, it yields

—w’ cosh kh + gk sinh kh = 0

0! = gk SMPKN ok tanh kh

cosh kh

That is the dispersion relation.
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If we want to calculate the wave number from a given water depth and a given circular
frequency, it is difficult to derive an explicit expression. Instead, we can write the
dispersion relation in a form below and try to find the intersection of two functions
(curves), the left hand side function and the right side function of the equation.

2
C =20~ (kn)ranh (0) [ 1y = tonh (k0)
g kh
A

<
v kh

tanh kh

»kh




7.4 Airy Wave

Some characteristics of the related hyperbolic functions

£ deep water shallow water
kh >3 kh <1
f, = tanh (kh) 1 kh
~coshk(y+h) Ky 1
fl(y)_ cosh kh €
1
~coshk(y+h) ky _
fz(y)_ sinh kh € kh
_sinhk(y+h) ‘ y
f3(y)_ sinh kh € ! 1+F
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Equating function f,(kh) and function f,(kh) , we can get solution, kh,
of the dispersion relation. Geometrically, the solution corresponds the
intersection of the two curves of f,(kh) and f,(kh).

C
f, (kh) = — 2
1( ) kh where Cth
f, (kh) = tanh (kh) )

(kh  if kh<l,or,h<x 1
(shallow water)

sinhkh 1- g2k A

tanh kh = = =41 if kh>3,o0r, h>—
coshkh 1+e” 2

(deep water)
(tanh 3 = 0.995)
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For a given water depth h, wave dispersion relation gives a
correspondence between the wave circular frequency w and the
wave number k.

circular frequency () ” wave number (K)

Since C:Q and k= 27
K A
be written as
2
27h
sza)—z 94 tanh | 222
K 27 A

Therefore, the dispersion relation also give the correspondence
between phase velocity (C) and wave length ( A1), provided water
depth h is given.

phase velocity (c) ” wave length (A1)
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Deep water waves:

If kh >3 ,or 277Zh > 3 approximately h > % , then

tanh (kh) — 1

it results the deep water dispersion relation

27
2: T2:—
ook -

Therefore, kT:>a)T; ﬂTDTT; ZTDCT.

, deep water waves are also called short waves.
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Shallow water waves:

If kh <« 1,or 277zh < 1,thatis, h « A,generally, if

h < 4/25 ,water depth can be considered small enough. Since

tanh (kh) ~ kh

it results shallow water dispersion relation.

12
2 2 2 _
o = ghk® | T =7

AN\

Therefore, k T:>(0T AT=T T, and C does not relate to wave

length any more.

h 1

For —< , shallow water waves are also known as long waves.

25
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Generally for water depth in between ( L ho1 o ;. 27N

2 A 25

L Jtanhkh = tanh(z—ﬂhj, L / tanh kh _ Ltanh(z—ﬂhj
Ca A C, kh 27h A

>0.087 ):
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For a fixed water depth,since C, = \/gh is a constant, phase
velocity C will decrease with wave length A . That is, longer waves
travel faster, and shorter waves travel slower.

L g : A .
For waves with fixed wave length, since ¢, = g— is a constant,

7T
phase velocity C will increase with the water depth h. That is, deep

water waves travel faster, and shallow water waves travel slower.




7.4 Airy Wave
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6.Velocity field

From velocity potential of the wave flows and dispersion relation,
velocity field of the wave flows can be readily derived.

A coshk (y+h)

¢ = 9A sm(kx @ ) et kh , > = gk tanh kh

_ 04 _ Agk cos(kx—a)t)COShk(y+ h)

OX ) cosh kh
= Aw COSh_k(y+h)cos(kX—a)t)

sinh kh

_ 04 _ Agk sin(kx—a)t)Sinhk(y+ h)

oy 0, cosh kh
= Aw sinhk (y +h)sm(kx wt)

sinh kh
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cos(kx—a)t), V, = Aw sin(kx— a)t) — 8_77

tanh kh ot

then, velocity can be written relative to that on y =0, it gives

u coshk(y+h) v sinhk(y+h)

U, coshkh ° W sinh kh

wUs ¥

f £ F L Fr L

lfcash kh

lfcosh kh



7.4 Airy Wave

For deep water waves, kh > 3, we have

U _coshk(erh)Neky V _Sil’lhk(y_l'h)Neky
U,  coshkh 7V, sinh kh




7.4 Airy Wave

For shallow water waves, kh < ], we have

u _coshk(erh)~1 v _sinhk(y+h)~1+y
U, ~ coshkh V, sinh kh h

u:i—ﬁ)cos(kx—a)t):n\/%, VZAG)(I—F%jSiH(kX—G)t)

u="0 ufu,=1
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7.4 Airy Wave

Characteristics of Airy waves

deep water shallow water
kh > 3 kh <1
dispersion w’ = gk W’ = ghk2
relation » 9 g4 )
C, = —= —— —
V. C. gh
u u
e eky —~= 1
velocity U, U,
Vv
— ~ g9 AAPUE I &
V, V h
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1. Particle orbit
At time t, fluid particle P takes the position (Xp(t), yp(t)), and if we
denote its mean position is (YP, VP) and

XP(t) = Xp + Xé (t)
yP(t) — VP + ylg(t) (X,,y,)

P(Xp9YP)

Since velocity is a time derivative of position, that is,

U, = ddti =u(X,y,t)+ o (Z;(V’t)x’+ o (Z;/V’t) y' +

remaining the main first term and integrating the equation, it gives

coshk (y+h)
sinh kh

cos (kX — ot ) dt

Xp

7+J (X, yt)dt_x+_[Aa)

coshk (Y +h)

— A sm(kx a)t)

Il
|

sinh kh
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gU versity
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P(Xp9YP)

Since velocity is a time derivative of position, that is,

U, = ddti =u(X,y,t)+ o (Z;(V’t)x’+ o (Z;/V’t) y' +

remaining the main first term and integrating the equation, it gives

coshk (y+h)
sinh kh

cos (kX — ot ) dt

Xp

7+J (X, yt)dt_x+_[Aa)

coshk (Y +h)

— A sm(kx a)t)

Il
|

sinh kh
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YFELAAY 7.4 Airy Wave
Similarly,
ov(X,V,t ov(X,V,t
szdyP:V(Y,V,t)+ (X. )x’+ (X.y )y'+...
dt OX oy

keeping the first term only and integrating the equation, it results

sinh k (Y + h)

Vo =¥+ [V(X.V.t)dt =y + [ Aw sin (kX — ot ) dt

sinh kh
inhk (Y +h
=yV+A o . (v + )cos(kY— wt)
sinh kh
Specifically, on the mean free surface, y = (the unknown wave

elevation is obtained.

Yo = Acos(kX —wt) =17
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7.4 Airy Wave

Then, the particle orbit of particle P is obtained.

(X5 _27)2 N

a

(yp_7)2 —1
b?

where

a=A

coshk (y+h)

Asinhk(7+ h)

sinh kh

Particle orbits are ellipses.

Both major axis

and minor

axis decrease with the
increase of the depth below

the free surface.

b

sinh kh

I F'

= T,

A S



NS TEPT 7.4 Airy Wave

G =
=

For deep water wave, kh > 1, major and minor axes become equal

a="h=Ae"’
Accordingly particle orbits grest
become circles. The radius is ki
getting smaller with the A
increase of depth from the
free surface. On the free
surface, the radius is just
equal to the wave amplitude.
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For shallow water waves, kh < 1 ,the major and minor axes are

=A=const, b:A(lJrlj
kh h

The particle orbits are ellipses. Major axis is horizontal and keeps
constant, while the minor axis is vertical and decreases linearly with
the depth from the free surface: on free surface,y = 0, it equals the
wave amplitude, and on sea bottom, y = -h, it reduces to zero.

A
—P 4@1—

F A r LT s ,—*'S’_?'?f £
f{ : LSS

A/kh
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7.4 Airy Wave




7.4 Airy Wave

8. Pressure field

According to the linearized dynamic condition (Bernoulli’s equation),
the pressure is evaluated as follows

a P Py pPay
coshk (y+h)
= A kKX — ot ) —
P9 cosh kh COS( ’ a)) P9y
coshk (y+h)

=Py ~osh kh n—pay
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For deep water wave, kh > 1, since we have approximation
coshk(y+h)
cosh kh

pressure is approximately written as

p-p,=pg(ne -y)

that is, the dynamic pressure, the exponential part, decays with the
increase of depth from free surface. Below half wave length, it could

be reasonably neglected, where static pressure dominates.
Vi

/m (kh>> 1)
>

N N~

y
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G =
e

For shallow water wave, kh < 1, cosh k ( y+ h)
since we have approximation on the left, ~

cosh kh

pressure distribution is approximated as

P-p.=p9(n-Y)

that is, the pressure is very similar to static pressure distribution.The
only difference is that the depth is measured from the instantaneous
wave surface. _

/ﬁt

p

i
N\ kh<<)
P/ \pd Ps

Pd



7.4 Airy Wave

Eg. 1 For an Airy wave, it is given that amplitude A = 0.3 m, wave
period T =2 s, calculate its circular frequency, wave number, phase
velocity, wave length and the maximum wave slope.

Solution:

27 2x3.1415927

Circular frequency: @ = =3.1425s""
T 2
Wave number: 0’ = gk
> (3.142)
o=@ JGA2)
g 9.81
Phase velocity: C = @ _3.142 =3.1078 m/s

Kk 1.011




7.4 Airy Wave

:2_7z: 2x3.1415927 62148 m

K 1.011

Wave length: A

Wave elevation: 77 = Acos (kX — a)t)
=0.3cos(1.01x —3.142t)

Wave slope: tea = 2—77 = AK Sin(kx — a)’[)
X

=0.3x1.01cos(1.01x—3.142t)

The maximum wave slope angle:

tga. =0.3x1.01=0.303

= a_ =16.86"




SERLAY 7.4 Airy Wave

Eg.2 A boat on a water wave is rolling at a rate of 30 cycles per
minute. The sea is assumed deep enough. Calculate the wave length L,
circular frequency w, wave number Kk and the phase velocity C.

e

Solution: Since the boat is not traveling, its rolling is assumed to
be caused by an incident water waves. Then,

1

wave period: T = —min = 2(s) | wave length:
30 :
| 27
circular frequency: , L = - 6.26(m)
2 |

w="T= 3.14(1/5s) | phase velocity:

wave humber:

I L
k=2__1.006 : C:T—=3.13(m/s)

g I
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Eg. 3 Consider two fluid layers, the upper fluid with densityp,, depth h,, the
lower fluid with densityp, depth h.Two fluids are bounded by uppermost and
lowest horizontal rigid walls. Determine phase velocity for the wave at the
separating surface of the two layers with wave number k.

Solution: Y,
Take origin at the mean separating surface, X- <<« T
axis horizontal and y-axis vertical, upward o 4 x

ol . . ‘%‘"
positive. Then velocity potentials of the wave ’ -
in each layers are respectively as follows,

in the upper layer e e
¢ = gﬁcosilol:}(lir;h ) sin(kx—at) =Ccoshk(y—h')sin(kx—at)
in the lower layer
~ gAcoshk(y+h)

sin(kx—at) = Dcoshk( y+h)sin(kx—at)

@  coshkh




7.4 Airy Wave

On the interface of the upper and lower fluid layers, pressure
and velocity should coincide with each other.

According to Bernoulli’s equation, we have

. _|_gy_|_%:(), B+gy+%:0
ol ot Yo, ot
On the interface, Y = 77 , pressure coincidence requires, p = p’,i.e.
, , 09’ 0p
+ p'——= + p— =0
pOntp —==pentp—- (y=0)

n = 1 (ﬂéﬂ—péij
—> g(p-p') ot ot




7.4 Airy Wave

Next, velocity coincidence. On the interface, y-components of
the upper and lower velocities should be equal, that is
ogp’ 0¢

— -0
Sy oy (y=0)

KC sinh k (—h')sin(kx — a)t) = kD sinh kh sin(kX — a)t)

Thus, C sinh kh' = =D sinh kh

From the linear kinematic condition of Airy wave, we have

¢ _0¢ _On
oy oy ot

(y=0)




7.4 Airy Wave

Therefore,
O¢ 1 , 09’ 0°¢
= — =0
oy g(p—p')(p ot P ar (y=0)

kD sinh khsin (kx — wt)

—0'w°C coshk (—h")+ pw’D cosh kh
:[ p'@’Ccoshk(-h") ’pa) oS ]sin(kx—a)t)
g(p-p)

kDg (p — p")sinh kh

> o =
oD cosh kh— p'C cosh kh'




Dg (p — p')sinh kh
k (oD coshkh— p'C cosh kh')

|

_ g(p—p")
cosh kh , C cosh kh'
Kl p— —-p —
sinh kh D sinh kh

_ g(p-p')
k (p/tanh kh + p'/tanh kh') End of Eg. 3.




