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For Airy wave, we need to determine three parameters, (A,  k, ω). In fact, 
only two of them, (A, k), need to be determined, since a dispersion relation 
exists, that will be introduced soon later in this section. 

1. Airy wave is a 2-dimensional cosine function, known as  
cosine  wave, sine wave or linear sinusoidal wave.

 cosA x tk   

A -- wave amplitude; H = 2A -- wave height. 
λ -- wave length, the distance between two adjacent crests or troughs.
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2.  k : the wave number

 cos kA x 

Let t = 0, Airy wave becomes simply a cosine function of x.

 
K = wavenumber = 2π/          [L-1] 

 



k

2kx n

For n = 1, it corresponds one wave form, that is, x =λ, therefore

(n is an integer)

2k 



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3.  ω : circular frequency

Let x = 0, Airy wave becomes a cosine function of t.

2t n 

For n = 1, it corresponds one period, t = T = 1/f , therefore

(n is an integer)

2 2 f
T

   

 cosA t 

 
 = frequency = 2π/T        [T-1], e.g. rad/sec 

 

T

1T
f

where
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4. Phase velocity / Celerity ( c or Vp ): wave form moving velocity
Let’s look at a fixed position in space where at an instant a crest located at. 

Then the crest moves forward. The duration until another crest arrives at that 
point is just one wave period. During this period, we can see the wave form 
moves forward just one wave length. So, velocity the wave form advances is

pc V
T


 

A
Vp

h

x

y

 

MWL 

 (x,t) = y
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   cos cos cosA k x t A k x t A k x
k

tc                

Airy wave is also known as sinusoidal wave. It is expressed as

where 2
2 T

c
k

T 





  

Phase velocity, wave length, wave period, wave frequency, circular 
frequency and wave number related with each other as follows:

c
T k
 

 
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5. Dispersion relation: relation between circular frequency and wave number.

Now, substituting the velocity potential in the linearized free surface 
condition, it yields

   cosh
sin

cosh
k y hgA kx t

kh
 




 

2

2 0g
y t
  
 

 

Velocity potential

Free surface condition (on y = 0)

2 cosh sinh 0kh gk kh  

2 sinh tanh
cosh

khgk gk kh
kh

  

That is the dispersion relation.

7.4   Airy Wave



Shanghai Jiao Tong University

If we want to calculate the wave number from a given water depth and a given circular 
frequency, it is difficult to derive an explicit expression. Instead, we can write the 
dispersion relation in a form below and try to find the intersection of two functions 
(curves), the left hand side function and the right side function of the equation.

   
2

tanhhC kh kh
g


   tanhC kh

kh


1 

kh =f(c)
kh 

tanh kh 

kh
C

311/25
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Some characteristics of the related hyperbolic functions

1 kh

1

f
3kh  1kh 

 0 tanhf kh

   
1

cosh
cosh

k y h
f y

kh



kye

   
2

cosh
sinh

k y h
f y

kh



kye

1
kh

   
3

sinh
sinh

k y h
f y

kh


 kye 1 y
h


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Equating function f1(kh) and function f2(kh) , we can get solution, kh, 
of the dispersion relation. Geometrically, the solution corresponds the 
intersection of the two curves of f1(kh) and f2(kh).

2

2

 if 1, or,
            (shallow water)

sinh 1tanh 1    if 3, or,
cosh 1 2

             (deep water)
            (tanh 3 0.995)

kh

kh

kh kh h

kh ekh kh h
kh e












     

 

 

2 hC
g




 

   
1

2 tanh

Cf kh
kh

f kh kh




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Since and                  , the dispersion relation can 

be written as

For a given water depth h, wave dispersion relation gives a 
correspondence between the wave circular frequency ω and the 
wave number k.

circular frequency (ω) wave number (k)

c
k



2k 




2
2

2

2tanh
2
g hc

k
  

 
    
 

Therefore, the dispersion relation also give the correspondence 
between phase velocity (c) and wave length (λ), provided water 
depth h is given.

phase velocity (c) wave length (λ)
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Therefore, .

Deep water waves:

 tanh 1kh 

2 gk 
2

2d
g gc
k




 2 2T
g




; ;k T c       

If                 , or,                  , approximately , then3kh  2 3h



2

h 


it results the deep water dispersion relation

Since , deep water waves are also called short waves.
1
2

h


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Shallow water waves:

 tanh kh kh

2 2ghk 
2

2T
gh


 2
sc gh

Therefore, and c does not relate to wave 
length any more.

, ,k T    

If               , or, , that is, , generally, if

, water depth can be considered small enough. Since

1kh  2 1h


 h 

25h 

it results shallow water dispersion relation.

For   , shallow water waves are also known as long waves.
1

25
h


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Generally for water depth in between (                  or                        ):

2 tanh 2tanh tanh ,   tanh
2d s

c h c kh hkh
c c kh h

  
  

         
   

2 h


1 1
2 25

h


 

7.4   Airy Wave
2 0.08h 


 
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For a fixed water depth, since is a constant, phase 
velocity c will decrease with wave lengthλ. That is, longer waves 
travel faster, and shorter waves travel slower.

For waves with fixed wave length, since is a constant, 
phase velocity c will increase with the water depth h. That is, deep 
water waves travel faster, and shallow water waves travel slower.

sc gh

2d
gc 




2 h

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6. Velocity field
From velocity potential of the wave flows and dispersion relation, 

velocity field of the wave flows can be readily derived. 

   cosh
sin ,

cosh
k y hgA kx t

kh
 




 

   

   

cosh
cos

cosh
cosh

cos
sinh

k y hAgku kx t
x kh

k y h
A kx t

kh

 


 


  



 

2 tanhgk kh 

   

   

sinh
sin

cosh
sinh

sin
sinh

k y hAgkv kx t
y kh

k y h
A kx t

kh

 


 


  



 
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On y = 0 :

 0
1 cos ,

tanh
U A kx t

kh
    0 sinV A kx t

t
  






then, velocity can be written relative to that on y = 0, it gives

 
0

cosh
,

cosh
k y hu

U kh



 

0

sinh
sinh

k y hv
V kh




0

u
U0

v
V
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For deep water waves, , we have3kh 

 
0

cosh
,

cosh
kyk y hu e

U kh


 
 

0

sinh
sinh

kyk y hv e
V kh


 

g
k


g
k


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 
0

cosh
1,

cosh
k y hu

U kh


 
 

0

sinh
1

sinh
k y hv y

V kh h


  

For shallow water waves, , we have1kh 

 cos ,A gu kx t
kh h
      1 sinyv A kx t

h
     
 
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Characteristics of Airy waves

dispersion 

relation

velocity 

3kh  1kh 
2 gk 

2

2d
g gc
k




 

2 2ghk 

2
sc gh

0

kyu e
U



0

kyv e
V



0

1u
U



0

1v y
V h

 

deep water shallow water
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7. Particle orbit

 P(xp,yp) 

 (x’,y’) 
 y,x

At time t, fluid particle P takes the position (xP(t), yP(t)), and if we 
denote its mean position is                 and ,P Px y

( ) ( )
( ) ( )

P P P

P P P

x t x x t
y t y y t

 
 

Since velocity is a time derivative of position, that is,

     , , , ,
, ,P

P

u x y t u x y tdxu u x y t x y
dt x y

 
     

 


remaining the main first term and integrating the equation, it gives

     

   

cosh
, , cos

sinh
cosh

sin
sinh

P

k y h
x x u x y t dt x A kx t dt

kh
k y h

x A kx t
kh

 




    


  

 
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7. Particle orbit

 P(xp,yp) 

 (x’,y’) 
 y,x

At time t, fluid particle P takes the position (xP(t), yP(t)), and if we 
denote its mean position                 and ,P Px y

( ) ( )
( ) ( )

P P P

P P P

x t x x t
y t y y t

 
 

Since velocity is a time derivative of position, that is,

     , , , ,
, ,P

P

u x y t u x y tdxu u x y t x y
dt x y

 
     

 


remaining the main first term and integrating the equation, it gives

     

   

cosh
, , cos

sinh
cosh

sin
sinh

P

k y h
x x u x y t dt x A kx t dt

kh
k y h

x A kx t
kh

 




    


  

 
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Similarly,  

     , , , ,
, ,P

P

v x y t v x y tdyv v x y t x y
dt x y

 
     

 


keeping the first term only and integrating the equation, it results

     

   

sinh
, , sin

sinh
sinh

cos
sinh

P

k y h
y y v x y t dt y A kx t dt

kh
k y h

y A kx t
kh

 




    


  

 

Specifically, on the mean free surface,             , the unknown wave 
elevation is obtained.

0y 

 cosPy A kx t   
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Then, the particle orbit of particle P is obtained.

   2 2

2 2 1P Px x y y
a b
 

 

where
 cosh

,
sinh

k y h
a A

kh



 sinh

sinh
k y h

b A
kh




Particle orbits are ellipses.
Both major axis and minor 
axis decrease with the 
increase of the depth below 
the free surface.
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k ya b Ae 
Accordingly particle orbits
become circles. The radius is 
getting smaller with the 
increase of depth from the 
free surface. On the free 
surface, the radius is just 
equal to the wave amplitude.    

For deep water wave,              , major and minor axes become equal1kh 
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const,Aa
kh

 

The particle orbits are ellipses. Major axis is horizontal and keeps 
constant, while the minor axis is vertical and decreases linearly with 
the depth from the free surface: on free surface, y = 0, it equals the 
wave amplitude, and on sea bottom, y = -h, it reduces to zero.

For shallow water waves,                , the major and minor axes are1kh 

1 yb A
h

   
 
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8. Pressure field

According to the linearized dynamic condition (Bernoulli’s equation), 
the pressure is evaluated as follows

   

 

cosh
cos

cosh
cosh

cosh

ap p gy
t

k y h
gA kx t gy

kh
k y h

g gy
kh

 

  

  


   




  


 
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 k y
ap p g e y   

For deep water wave,              , since we have approximation1kh 
 cosh

cosh
k yk y h

e
kh




pressure is approximately written as

(kh << 1) 
p pd 

ps pd

p

(kh >> 1)
Vp

ghVp 

that is, the dynamic pressure, the exponential part, decays with the 
increase of depth from free surface. Below half wave length, it could 
be reasonably neglected, where static pressure dominates.

7.4   Airy Wave



Shanghai Jiao Tong University

 ap p g y   

For shallow water wave,             , 
since we have approximation on the left,

1kh   cosh
1

cosh
k y h

kh




pressure distribution is approximated as

(kh << 1)
p pd 

ps pd 

p

(kh >> 1) 
Vp

ghVp 

that is, the pressure is very similar to static pressure distribution. The 
only difference is that the depth is measured from the instantaneous 
wave surface.      
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Eg. 1 For an Airy wave, it is given that amplitude A = 0.3 m, wave 
period T = 2 s, calculate its circular frequency, wave number, phase 
velocity, wave length and the maximum wave slope.
Solution：

Circular frequency: 12 2 3.1415927 3.142 s
2T

 
  

Wave number:

 

2

22
13.142

1.011 m
9.81

gk

k
g



 



   

Phase velocity: 3.142 3.1078 m/s
1.011

c
k


  
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Wave length:
2 2 3.1415927 6.2148 m

1.011k
 

  

Wave elevation:  
 

cos

 0.3 cos 1.01 3.142

A kx t

x t

  

 

Wave slope:  

 

tg sin

     0.3 1.01cos 1.01 3.142

Ak kx t
x

x t

 
  


  

The maximum wave slope angle:

max
o

max

tg 0.3 1.01 0.303

16.86





  

 
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Eg. 2 A boat on a water wave is rolling at a rate of 30 cycles per 
minute. The sea is assumed deep enough. Calculate the wave length L, 
circular frequency ω, wave number k and the phase velocity c.

Solution： Since the boat is not traveling, its rolling is assumed to 
be caused by an incident water waves.  Then,

wave period: 1 min 2( )
30

 T s

circular frequency:

2 3.14(1 / )s
T
  

wave number:
2

1.006k
g


 

wave length:

2 6.26( ) L m
k


phase velocity:

3.13( / ) 
LC m s
T
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Eg. 3 Consider two fluid layers, the upper fluid with densityρ1, depth h1, the 
lower fluid with densityρ, depth h. Two fluids are bounded by uppermost and 
lowest horizontal rigid walls. Determine phase velocity for the wave at the 
separating surface of the two layers with wave number k.

Solution：
Take origin at the mean separating surface, x-
axis horizontal and y-axis vertical, upward 
positive.Then velocity potentials of the wave 
in each layers are respectively as follows,

       cosh
sin cosh sin

cosh
k y hgA kx t C k y h kx t

kh
  




     


in the upper layer

       cosh
sin cosh sin

cosh
k y hgA kx t D k y h kx t

kh
  




    

y

x

7.4   Airy Wave
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On the interface of the upper and lower fluid layers, pressure 
and velocity should coincide with each other.

According to Bernoulli’s equation, we have 

0, 0p pgy gy
t t
 

 
  
     
  

( 0)g g y
t t
      
     

 

 
0

1

y
g t t

   
 



       
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Next, velocity coincidence. On the interface, y-components of 
the upper and lower velocities should be equal, that is

( 0)y
y y
  

 
 

     sinh sin sinh sinkC k h kx t kD kh kx t    

sinh sinhC kh D kh  

From the linear kinematic condition of Airy wave, we have

( 0)y
y y t
    

  
  

Thus,
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Therefore,

 
2 2

2 2

1 ( 0)y
y g t t
   

 
          

 
 
   

2 2

sinh sin

cosh cosh
sin

kD kh kx t

C k h D kh
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From above expression, finally we can get phase velocity formula.
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End of Eg. 3.


