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6.8 A Fixed Body in Unsteady Flow

Up to now, a body moving in calm water at an acceleration is considered 
and added inertia force is introduced. If the body is fixed on the earth and 
the flow is unsteady, whether a resultant force on the body is non-zero? 
whether an added mass is also derived?

Consider a 3d sphere fixed on the earth, and the flow is unsteady. The 
solution can readily be obtained from the velocity potential of a steady uni-
form flow past a sphere, only need to change the velocity U to U(t), that is 
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From the velocity potential, we prepare following terms in the evaluation 
of the hydrodynamic forces on the sphere
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As we did in the previous section, according to Bernoulli’s equation, the 
resultant horizontal force due to hydrodynamic pressures on the sphere is
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As we know in the previous section, a sphere moving in calm water is 
of added mass m(1) , half the mass of the fluid displaced by the sphere. For a 
sphere fixed in an unsteady flow, it has another additional added mass,       , 
equal to the mass of the fluid displaced by the sphere.  

    (1) ( 2 )x U mmF U t tV   

( 2 ) (1)m V m 

Generally, for a body fixed in an unsteady flow, we also derive an added 
mass (coefficient). It consists of two parts, except the added mass due to 
the body moving in calm water, an additional mass of the fluid occupied (or 
displaced) by the body.

( 2 ) (1)
1m mC C 

6.8 A Fixed Body in Unsteady Flow

V
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Therefore, added mass of a body moving in calm water with acceleration 
is smaller than the added mass of the body fixed in an accelerated flow by 
an amount of the mass of the fluid displaced by the body. Accordingly, the 
resultant force is also smaller.

6.8 A Fixed Body in Unsteady Flow
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6.9 Kinetic Energy of Potential Flow

An unsteady flow will accompany an added inertia force. Magnitude of the 
added inertia force may be derived from its kinetic energy. 

Green’s formula

For vector A
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S
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0

If  is not a singly-connected region, 
there exists an inner boundary  as
shown in the figure. Then,
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Eg.

Solution： We have obtained the velocity potential before,
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6.9 Kinetic Energy of Potential Flow

A sphere of radius a moves in calm water along x-axis straight 
ahead at speed U. Calculate the kinetic energy of the flow field.

is the normal inward to the sphere.n
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6.10 Decomposition of Velocity Potential

Consider a body moving in calm water with an arbitrary motion.

In the earth-fixed coordinate system, velocity potential of the flow is 
governed by the following equations

2 ( , , , ) 0       in  the flow  field

on the body surface

0       at far field
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Giving velocity V of the body velocity potential
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6.10 Decomposition of Velocity Potential

Generally, motions of a body (a rigid body) can be resolved into a 
translation at velocity VO at point O, and a rotation around O. 

Set the origin of a coordinate system at O, 
and denote r as the position vector from O. 

Kinetic body 
surface condition 

outward unit normal 
vector n(n1, n2, n3)
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Define a general normal vector and a general velocity vector.

In this way, the kinetic body surface condition is written as

6.10 Decomposition of Velocity Potential
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is dependent on t, 
but      and     are not.

Therefore, velocity potential,    , is resolved into 6 independent components,        , 
which are velocity potentials corresponding to motion of the j-th mode of the body. 

2 ( , , , ) 0         in  the flow  field

                      on the body surface

0                         at far field
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6.10 Decomposition of Velocity Potential

x j is the general velocity

j is the velocity potential
due to the motion of the
body with unit velocity
of the j-th mode.

jn j

x j
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general added mass

6.10 Decomposition of Velocity Potential

Kinetic energy of the flow field

n is the outward normal
to the body surface
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6.11 The Method of Images
It is found that for some simple body, when an elementary flow is introduced 

into the flow field, the kinematic body surface condition can be fulfilled by putting a 
corresponding elementary flow, such as due to a point source, a point sink, a 
doublet, a point vortex and so on, as well as a combination of these elementary 
flows, at the position(s) of the image point of the original elementary flow inside 
the body and taking the body away from the field. In this way, from the principle of 
superposition, the velocity potential will be equal to the sum of the original and the 
image elementary flows. This method is call the method of images.

Example: In the upper half plane flow, there is a point source.
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

Put a new point 
source at the 

mirror image point

The boundary should 
be a streamline.

The boundary conditions for both flows are equivalent, 
So both flows in the upper half plane are the same.

6.11 The Method of Images

0nvn

 


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Point source near a flat wall

    2 22 2ln ln
2
q x y a x y a
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     

Eg.
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0 02 2
,       0x yy y
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 
Body surface condition on 

the horizontal flat wall is 
satisfied. Pressure can be evaluated from it 

6.11 The Method of Images



Shanghai Jiao Tong University

Point vortex near a flat wall

1 1tan tan
2

y a y a
x x




      
 

Eg.

That is the boundary condition on 
the flat wall.

Here both vortices will move.

It can be verified that

   y y  

0
y





6.11 The Method of Images



Shanghai Jiao Tong University

Circular cylinder near a flat wall

   

2 2

2 22 2
1 a aUx
x y b x y b


 

   
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   y y   0
y





which is exactly the boundary condition on the horizontal flat wall
the flow has to be satisfied.

0
n





Eg.

6.11 The Method of Images

Put another circular cylinder, symmetric with 
the horizontal flat wall to the original one, outside 
the flow field. Then velocity potential will be a 
superposition of the ones of the two circular 
flows. It gives

It can be verified (if ) thata b
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A circular cylinder between two parallel flat wallsEg.

Point source or point vortex near two perpendicular wallsEg.

6.11 The Method of Images
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6.12 Corner Flows
If a function satisfies Laplace’s equation, and fulfills the kinematic body 

surface condition, it will be a velocity potential or a stream function of the 
potential flow around the body, depending on which form the body 
surface condition is given, in velocity potential or in stream function. In 
this way, from a known harmonic function we can inversely find a new 
kind of potential flow. 

Eg. Following is the 2d potential function and stream function 
constructed from triangular functions.

cosr 

sinr 
Note: Harmonic function means a function which is a solution of Laplace’s equation.
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It can be verified that they satisfy Laplace’s equation.

1. Laplace’s equation

2 2
2

2 2 2

2 2
2

2 2 2

1 1 0

1 1 0

r r r r

r r r r

 
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2. Velocity field
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 
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

  
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6.12 Corner Flows
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Now we give some potential flows corresponding to them.

1) Uniform flow passing an infinitely long plate

0If =1, =0, , 2    =1, =0 flat plateu v （ ）

6.12 Corner Flows
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2) 90°right angle corner flow

0If  =2, =0, / 2, ,  3 / 2,  2     

2 ,  2u x v y  

6.12 Corner Flows
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3) 120°obtuse angle corner flow

0
3 2 4In this case, = , =0, , ,  2
2 3 3

   

6.12 Corner Flows
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4) 135°obtuse angle corner flow

0
4 3 3Let = , =0, , 
3 4 2

  

6.12 Corner Flows
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5) 180°corner flow
(Half infinitely long flat plate without thickness)

0
1Let = , =0, 2
2

  

6.12 Corner Flows
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6) 270°corner flow

0
2 3In this case, = , =0, 
3 2

 

6.12 Corner Flows
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U
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U
U x x

Laplace’s eq.

Dynamic cond.
(Bernoulli eq.)

Kinematic cond.

Far field cond.

Initial condition

• Governing equations of incompressible potential flows

Review
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Name 2D 3D
Point Source

Point Sink

Doublet Flow
(Dipole)

Point Vortex ——

Uniform
Flow

• Some elementary flows：

ln ,
2 2
m mr  
 

 
4
m
r






,
2

 



 rΓ ln
2

 

2 ,
2
M x

r



  22

M y
r




 34
M x

r





,Ux Uy   Ux 

Review
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Superposition Principle: A superposition of elementary potential 

flows gives another new complex potential flow. 

a) A point source + a point sink a dipole

b) A point source + a point vortex                   a spiral flow

c) A uniform flow + a point source                  a Rankine               
half-body flow

Review

d) A uniform flow + a point source                  a flow around
+ a point sink a closed body
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d’Alembert’s paradox

For the following two cases, the resultant hydrodynamic 

forces on a body vanish. 

1) A body moving in calm water at constant velocity

2) A body fixed in a uniform flow field

Review
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Asymmetricity of 
flow fields (body)

Flow with 
circulation

lift

Unsteady flow acceleration Added mass

Flow field Body

Review
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Lift -- Kutta-Joukowski formula

L  F U


1

n

L i
i




    
 
F U


Direction of a lift is the one turning 90°from the direction of 
the uniform flow against the direction of circulation.

Review
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Name components Velocity potential Pressure 
coefficient Drag & Lift

Circular 
Flow

Sphere 

Flow
Circular 

Flow with 

Circulation
Unsteady 
Circular 

Flow
Unsteady 
Sphere 

Flow

2d Uniform 
Flow+2d Dipole

3d Uniform 

Flow+3d Dipole

2d Uniform 
Flow+2d Dipole 

+ Point Vortex
Moving 2d 

Dipole

Moving 3d 

Dipole

none

none

lift

drag

drag

2
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r

 

3

2cos ( )
2
aU r
r

 

2

2(1 ) cos
2

aU r
r

 



 

2 cos( )U t a
r


3

2

( ) cos
2

U t a
r


21 4sin 

291 sin
4



2

1 2sin
2 aU



   

 

  

  

Review
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Added Mass

j
ji i j i i j

B B V

m n dS dS dV
n

  


      
  

Added mass depends on the shape of the body, mode of

the motion and density of the fluid. Generally it is a 6×6 

symmetric matrix with 36 components, among which only 21 

components are independent. If the body has some symmetricity, 

the independent components will be further reduced.
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Added mass coefficient
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
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Added mass due to a body moving in calm water 
with acceleration is smaller than the added mass due to 
an unsteady flow passing the body.

( 2 ) (1)
1m mC C 

Review


