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Chapter 6
Potential Flow Theory
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6.5   Potential Flow with Circulation

Now we know that whether from the point of view of a uniform flow 
flows past a fixed body, or from the point of view of a body moves in a calm 
water at constant velocity, the resultant forces are the same, all vanish 
(d’Alembert’s Paradox).Then, in what kind of potential flows, it will 
result a nonzero resultant force on the body? 
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U  

Let’s look at flows with circulation. It results asymmetric flow fields.

U

 

m

A uniform flow + a point source

Symmetric flow fields

Without circulation：

With circulation：

6.5   Potential Flow with Circulation

A uniform flow + a point vortex

Asymmetric flow fields
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Consider a circular cylinder flow with circulation.

A uniform flow + a point dipole + a point vortex. 
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(a)  A circular flow without circulation

(b)  A point vortex
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We can see that the superposed flow is asymmetric. On the upper side, 
the speed is getting higher, while on the lower side, getting slower, because 
the speed due to the point vortex coincides with or opposes to the ones of 
circular flow fields.The upper side pressure is reduced and the lower side 
one is increased. It results a resultant upward force, namely lift force.

Velocities of the superposed flow are written as
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Now let’s confirm the body surface condition and the far field condition.

1. The circle r = a is a streamline, that is, ψ = C. 

ln
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

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Or, on r = a , Vr   = 0. Fulfill kinematic body surface condition.

2. At far field, r = ∞ , V    ＝ U. 

Fulfill the undisturbed condition.

Therefore, the body surface condition and far field condition are all fulfilled.
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Shanghai Jiao Tong University

Velocity distribution on the circle, r = a.
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That is, the radial component vanishes, i.e. without separation from the 

surface, and the tangential component varies with a sine function of angle 
θ, which is the angle from the direction of the uniform flow to the radial 
line.

Location of the stagnation points.
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How many stagnation points？

(a) If                  and , there are 2 stagnation points.        sin 1  4 aU 

Since                                         , then and  are a pair 

of stagnation points. The larger the circulation, Γ, the larger the angle, θ, 

that is, stagnation points are getting nearer to the bottom of the circle.
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(b) If                          , we have                                              .  

The 2 stagnation points are overlapped.

They become a single stagnation point. 
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(c) If                     , we have                , there will be no stagnation point 

on the circle. Solving the following equation, two stagnation points are 

obtained. One is located inside the circle, and the other is outside of it.
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Pressure distribution on the circle, r = a

According to Bernoulli’s equation, we have
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It follows
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Drag and lift forces on the circular cylinder of unit length
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As a result, there is no resultant drag force on the circle!

6.5   Potential Flow with Circulation

We shall see that the lift force does not vanish.



Shanghai Jiao Tong University

 

2 2 2

0

2
2 2 2

0

2 2

0

1 ( 2 sin ) sin
2 2

1 1 21 4sin sin sin
2 2 2

sin

LF p U U a d
a

Up U a d
a a

U d U







   


     
 

   






            
                       


    






For the potential flow around a circle 
with circulation, a lift force, which is 
perpendicular to the uniform flow, is 
resulted. 

U U

6.5   Potential Flow with Circulation

Its magnitude equals the product of fluid density, speed of the uniform 
flow and the circulation. Its direction is 90°turning from the direction of 
the uniform flow against the rounding direction of the circulation.
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It is concluded that a uniform flow, U, flows passing a body with circulation 
Γ, a lift force is generated. It is perpendicular to the uniform flow and its 
magnitude equals the product of fluid density, uniform flow speed and the 
circulation, which is named as Kutta-Joukowski formula.
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6.5   Potential Flow with Circulation

Generally, If a potential flow accompanies with n (>1) vortices, the circulation 
will be replaced by the sum of their circulations. Thus, we get the general 
Kutta-Joukowski formula of lift force.
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6.6 Potential Flows due to A Body Moving at Varying Speeds

Now we consider a sphere moving in calm water at speed
varying with time  along positive x-direction, and calculate resultant 
hydrodynamic force on it.

The reference frame O(x, y, z)  is 
fixed on the earth. Then, the flow is 
governed by
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This flow is equivalent to a 3d dipole moving along x-axis with a velocity 

potential
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Thus, the velocity potential is explicitly expressed as
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Substituting it in Bernoulli’s equation (omitting body force), the dynamic 
pressure is obtained
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On x direction, the resultant horizontal hydrodynamic force is expressed as
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From the derived expression of the velocity potential function, terms in 
the integral can be immediately given on the sphere.                           
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Filling above terms in the integral for horizontal force on the sphere, 

it gives
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That is, the horizontal force is proportional to the sphere’s acceleration
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Case 1: If the speed is constant, i.e. , again we get Fx = 0, the 
same result as the fore mentioned d’Alembert’s paradox.
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Case 2: If the sphere moves with an acceleration, the resultant horizontal 
force will be
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6.7 Added Mass

Now we know that when a body moves in calm water with accelera-
tion, it will result a hydrodynamic force F, namely added inertia force, on it
due to the hydrodynamic pressure on the body surface from the surroun-
ded water. It is proportional to the acceleration, and the coefficient has the 
dimensional of mass, namely added mass, denoted in mA. If an external 
force P is applied to the body of mass m, it obeys Newton’s 2nd law, that is

d
d Am m
t
    U P F P U

That is, when a body moves in calm water with acceleration, as if it
moves in vacuum with an additional mass, virtual mass or added mass, mA, 
added to the original mass m. In fact, movement of the body will take part of 
the fluid moving partially together with the body. In some sense, the added 
mass is a measure of that part of fluid. 
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t
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Derivation of the expression of added mass

Consider a body at rest in calm water at t = 0 starting to speed up 
along x-axis, and its speed at t = T increased up to U = 1. Following the 
kinetic momentum law, the change of the kinetic momentum during this 
course is definitely due to the whole effects of the actions on it, that is
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Kinetic momentum of the fluid can be expressed in velocity potential
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Since at t = 0 the fluid is calm water, the velocity potential is a constant, 
could take the value of 0 without loss of generality, that is 
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We have derived in the last section that for a body moves in calm 
water at acceleration , the resulted hydrodynamic force on the body is 
equivalent to an inertial force due to a virtual mass (added mass), mA. Based 
on Newton’s 3rd law, the body will apply a reaction -F, of the same 
magnitude but opposite direction, to the water.
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Following the fore mentioned kinetic moment law
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It results the expression for added mass in velocity potential                        

From the body surface condition at t = T , we have
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The last expression is a special case of added mass, i.e. the x-component 
of reaction due to the body moving along x-axis. Generally, if a body moves 
in i-th degree of freedom among 6 degrees of freedom (6 DOF), the j-th com-
ponent of added mass is expressed as

6.7 Added Mass

j
ji i j i

B B

m n dS dS
n

 
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   
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Some properties of added mass

1. Added mass is related to the shape of the body, mode of the motion
and the fluid density

Shape of the body
Motion mode

The fluid density

From the above expression, added mass is related to the shape of the 
body, nj and B,  mode of motion,Φi , and the fluid density, ρ. Combination of i 
and j, gives totally 6×6=36 kinds of added mass. For body moves at i-th 
mode with Ui = 1, the j-th component of the virtual inertial force leads to 
added mass component mji

j
ji i

B

m dS
n


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 


6.7 Added Mass
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Shape of the body and the motion mode
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Fluid density

Since the added mass is proportional to the fluid density, the larger 
the fluid density is, the greater the added mass is.  Thus, the added mass in 
air is much smaller than the one of the same shaped body in water, so it
becomes negligible comparing with its mass. Therefore, the added mass
in air is generally neglected, while in naval architecture and ocean 
engineering, the added mass is usually comparable with its mass, and 
more often is a key factor. For example, in maneuvering and seakeeping,
ship motions are generally unsteady and added mass always appears in 
motion equations.

6.7 Added Mass
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2. Added mass is a symmetric matrix of order 6
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and added mass is a symmetric matrix. Because of its symmetricity, 
among 36 components only 21 of them are independent. 
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It can be proved (the proof is omitted here) that

(a) If a body has a symmetric plane which is chosen as a coordinate 
plane, in the 21 independent components, 9 of them will vanish, and 
only 21 - 9 = 12 of them are non zero.

(b) If the body has two symmetric planes which are all coordinate 
planes, in the 21 independent components, 13 of them will vanish, 
and only 21 - 13 = 8 of them are non zero.

(c) If the body has three symmetric planes which are all coordinate 
planes, in the 21 independent components, 15 of them will vanish, 
and only 21 - 15 = 6 of them are non zero.
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3. Added mass and kinetic energy of the fluid

Suppose a body moving at all 6 motion modes (3 translations, 3 rotations), 
with velocity (translational and angular) Ui ( i = 1, …, 6), corresponds 
velocity potential UiΦi (Φi is denoted as the velocity potential at Ui = 1). The 
total velocity potential is expressed as a superposition of these velocity 
potentials                    , and the kinetic energy of fluid can be written in the 
total velocity potential as
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4. Added mass coefficient

A
m
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Added mass coefficient is defined as the ratio of added mass to the 

mass of fluid displaced by the body, that is

where mA is the added mass, ρ is the fluid density and is the volume of 

the body immersed in the fluid, or displaced by the fluid.
V
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