
1896 1920 1987 2006

Introduction to 
Marine  Hydrodynamics 

(NA235)

Department of Naval Architecture and Ocean Engineering

School of Naval Architecture, Ocean & Civil Engineering

Shanghai Jiao Tong University



Shanghai Jiao Tong University

Chapter 6
Potential Flow Theory
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Eg.2: Rankine Half-body Flow

—— A superposition of 3d uniform flow and a point source flow
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6.3   Potential Flow around a Body
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In Cartesian coordinates, the superposed velocity potential is

velocity:
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6.3   Potential Flow around a Body

As x→∞, we have u→U, the body surface become a stream tube. The 
mass conservation law tells us that the flow rate equals the point source 
intensity m. Denote S the cross section area, we have
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Eg.3： Rankine Closed-body Flow

—— A superposition of 3d uniform flow, a point source and a point sink

U SS x

y

+m -m
a

dividing streamline 
(see this with PFLOW) 

As the body surface is  a stream surface, we 
can guess that the sum of intensities of sources 
and sinks inside the body should be zero, that is

in b o d y

0m 

Thus, we can get a closed stream 
surface (Rankine Closed-body surface), 
only if the sum of intensities of all
point sources and the sum of the 
ones of all point sinks are of same 
magnitude. 

6.3   Potential Flow around a Body
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Denote m the source intensity, then velocity potential of the flow is 
expressed as

velocity:
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6.3   Potential Flow around a Body
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Velocities on the cross section, x = 0, are
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Radius R0 of the body on the cross 

section, x = 0, is evaluated by solving 

the following equation
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(see this with PFLOW) 

6.3   Potential Flow around a Body
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Eg.4：Circular Cylinder Flow

—— A superposition of 2d uniform flow and a 2d dipole

Velocity potential:
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Radial velocity: 
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The kinematic boundary condition on the body surface, the circle r = a ( a is 
the radius of the circle), requires the radial velocity to be equal to zero,  Vr = 
0, that is
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So, velocity potential of the circular cylinder flow is rewritten as
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6.3   Potential Flow around a Body
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Velocities on the circle is a function of polar 
angle. Points A and B are stagnation points.
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Pressures on the circle can be evaluated by using Bernoulli’s equation. At the 
infinite far field, velocity is U, i.e. the velocity of the uniform flow, and pressure 
there is denoted by  p∞. Then we have
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Generally a pressure coefficient, which is a dimensionless quantity, is used 
to express the pressure, it leads to
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21 ,
2 pp p C U 

And pressure on the circle can be expressed 
with pressure coefficient

Discussions：

1. Stagnation points (point A and B)

2
max

10, 1,
2r pV V C p p U     

2. Point C and D takes the lowest pressure.

2
, max min

30, 2 , 3,
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3. Pressures on the circle are symmetry up (                        ) and down 

(                   ), that is, vertically symmetry, and will be vertically balanced.
0 180  

180 360  
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Eg.5：Sphere Flow (Flow around a sphere)

—— a superposition of a 3d uniform flow and a 3d dipole

Velocity potential:
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On the sphere, r = a ( a is the radius ) , the impermeable body 
surface condition  requires radial velocity to be zero, Vr = 0, that is
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In terms of this result, the velocity potential of the sphere flow can be 
written as
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Velocities on the sphere:
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Pressure distribution on the sphere can be evaluated by using Bernoulli’s 
equation. At the infinitely far place, velocity is U, i.e. velocity of the uniform 
flow, pressure there is denoted as p∞ , then
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Expressed in a form of  pressure coefficient
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We can see that in 2d circular flow and 3d sphere flow, pressure dis-
tribution are symmetric, both horizontally and vertically, so neither a drag
force nor a lift force can be resulted, as following integrals show.
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This result is historically concluded as d’Alembert’s paradox: When a 
uniform flow flows past a rigid body, it generates neither drag force nor lift
force, provided the flow is in the regime of potential flow and without a 
circulation around the body. This is apparently contradict with our daily 
experiences. The reason is possibly due to the omission of fluid viscosity in 
our consideration, while in reality, a fluid is more or less with some viscosity.

6.3   Potential Flow around a Body
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6.4 Potential Flow Generated by a Moving Body

In practice, a body moving in calm water (or fluid), such as a ship tra-
velling in sea, an airplane flying on sky, is more common rather than the 
whole fluid flows passing a fixed body. Now questions arise

1)     Whether those two flows (flow fields) are the same? In other words, 
whether a uniform flow passing a fixed (steady) body is equivalent to 
the flow generated by a body moving in calm water (fluid) at a cons-
tant velocity?

2) Whether the flow generated by a body moving in calm water (fluid) is 
steady? Or unsteady?

3) Whether a drag or a lift is resulted in the moving body flow? Whether 
the d’Alembert’s paradox is still derived?
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At first, let’s consider the 2nd question: Is the moving body flow steady 
or unsteady? We can conclude that it depends on the choice of reference 
frame. Generally, we consider a body moving in calm water at a constant 
speed U along x-axis.

In an earth-fixed system, say (O, x, y, z), 
the flow is unsteady. It is governed by
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6.4 Potential Flow Generated by a Moving Body
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In a body-fixed system, say (O', x', y', z'), the flow will be steady.  

It is governed by

 
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, 0, 0 , , if , at far field
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It is the same as a uniform flow passing a fixed body.

6.4 Potential Flow Generated by a Moving Body
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x  =  x` + U t

The 2 different descriptions may be transformed with each other. Follow-
ing is the coordinate system transformation.
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6.4 Potential Flow Generated by a Moving Body
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x = x` + Ut

Following the dynamic condition (ignoring body forces), at far field, the dif-
ference between the two reference frames is
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According to the dynamic condition (ignoring body force), Bernoulli equa-
tion, at the stagnation point, S, in the earth-fixed system O
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In body-fixed system O', pressure at the stagnation point S can be obtained 
immediately
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Also pressures on the body surface can be readily obtained 
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6.4 Potential Flow Generated by a Moving Body
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Eg. Calculate resultant force on a circular cylinder moving at con-

stant speed U.
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Solution：The resultant force is an integral of pressures on B
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Conclusion: When a body moves in a calm water at a constant velocity, the 
resultant force on the body vanishes too, just like the one of a uniform flow 
flows passing a fixed body (d’Alembert’s paradox).

Where Φ' is the velocity potential of a uniform flow around a fixed body, i.e.
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6.4 Potential Flow Generated by a Moving Body
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6.5   Potential Flow with Circulation

Now we know that whether from the point of view of a uniform flow 
flows past a fixed body, or from the point of view of a body moves in a calm 
water at constant velocity, the resultant forces are the same, all vanish 
(d’Alembert’s Paradox).Then, in what kind of potential flows, it will 
result a nonzero resultant force on the body? 

Asymmetric body
shape / flow field

With 
circulation

Lift

Unsteady flow Acceleration Virtual mass

Flow Body
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U  

Let’s look at flows with circulation. It results asymmetric flow fields.

U

 

m

A uniform flow + a point source

Symmetric flow fields

Without circulation：

With circulation：

6.5   Potential Flow with Circulation

A uniform flow + a point vortex

Asymmetric flow fields
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Consider a circular cylinder flow with circulation.

A uniform flow + a point dipole + a point vortex. 
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(a)  A circular flow without circulation

(b)  A point vortex
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(c)  A circular flow with circulation
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6.5   Potential Flow with Circulation
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We can see that the superposed flow is asymmetric. On the upper side, 
the speed is getting higher, while on the lower side, getting slower, because 
the speed due to the point vortex coincides with or opposes to the ones of 
circular flow fields.The upper side pressure is reduced and the lower side 
one is increased. It results a resultant upward force, namely lift force.

Velocities of the superposed flow are written as

2

21 cos ,r
aV U

r r
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6.5   Potential Flow with Circulation
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Now let’s confirm the body surface condition and the far field condition.

1. The circle r = a is a streamline, that is, ψ = C. 

ln
2

a C



  

Or, on r = a , Vr   = 0. Fulfill kinematic body surface condition.

2. At far field, r = ∞ , V    ＝ U. 

Fulfill the undisturbed condition.

Therefore, the body surface condition and far field condition are all fulfilled.

6.5   Potential Flow with Circulation
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Velocity distribution on the circle, r = a.

0

2 sin
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rV

V U
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



 
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That is, the radial component vanishes, i.e. without separation from the 

surface, and the tangential component varies with a sine function of angle 
θ, which is the angle from the direction of the uniform flow to the radial 
line.

Location of the stagnation points.
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6.5   Potential Flow with Circulation
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How many stagnation points？

(a) If                  and , there are 2 stagnation points.        sin 1  4 aU 

Since                                         , then and  are a pair 

of stagnation points. The larger the circulation, Γ, the larger the angle, θ, 

that is, stagnation points are getting nearer to the bottom of the circle.

0 sin
4

V
aU 




  

   sin sin            
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(b) If                          , we have                                              .  

The 2 stagnation points are overlapped.

They become a single stagnation point. 

4 aU  sin 1
2
    
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(c) If                     , we have                , there will be no stagnation point 

on the circle. Solving the following equation, two stagnation points are 

obtained. One is located inside the circle, and the other is outside of it.

4 aU  sin 1 

2

21 co s 0 ,r
aV U
r


 
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21 s in
2

   0

aV U
r r 


  
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Pressure distribution on the circle, r = a

According to Bernoulli’s equation, we have

2 21 1
2 2

p V p U   

2
21 2 sin

2 2
p p U U

a
 



        
   

It follows
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Drag and lift forces on the circular cylinder of unit length
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As a result, there is no resultant drag force on the circle!

6.5   Potential Flow with Circulation

We shall see that the lift force does not vanish.
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For the potential flow around a circle 
with circulation, a lift force, which is 
perpendicular to the uniform flow, is 
resulted. 

U U

6.5   Potential Flow with Circulation

Its magnitude equals the product of fluid density, speed of the uniform 
flow and the circulation. Its direction is 90°turning from the direction of 
the uniform flow against the rounding direction of the circulation.
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It is concluded that a uniform flow, U, flows passing a body with circulation 
Γ, a lift force is generated. It is perpendicular to the uniform flow and its 
magnitude equals the product of fluid density, uniform flow speed and the 
circulation, which is named as Kutta-Joukowski formula.

L  F U


1

n

L i
i




    
 
F U


U

U

6.5   Potential Flow with Circulation

Generally, If a potential flow accompanies with n (>1) vortices, the circulation 
will be replaced by the sum of their circulations. Thus, we get the general 
Kutta-Joukowski formula of lift force.
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6.6 Potential Flows due to A Body Moving at Varying Speeds

Now we consider a sphere moving in calm water at speed
varying with time  along positive x-direction, and calculate resultant 
hydrodynamic force on it.

The reference frame O(x, y, z)  is 
fixed on the earth. Then, the flow is 
governed by

( )U t

 

2

0

0
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,    if 0,          initial cond.

r=a
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This flow is equivalent to a 3d dipole moving along x-axis with a velocity 

potential

3 2

cos
4 4
M x M

r r


 
 



n̂

U(t) 

3D Dipole
x

U(t)

r

a
From impermeable condition on 

the sphere, moment M of the dipole 
is determined.
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Thus, the velocity potential is explicitly expressed as

  3

2 2

cos cos
4 2

U t aM
r r
 


  

Substituting it in Bernoulli’s equation (omitting body force), the dynamic 
pressure is obtained
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On x direction, the resultant horizontal hydrodynamic force is expressed as
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From the derived expression of the velocity potential function, terms in 
the integral can be immediately given on the sphere.                           
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Filling above terms in the integral for horizontal force on the sphere, 

it gives
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That is, the horizontal force is proportional to the sphere’s acceleration

  32
3xF U t a      



Case 1: If the speed is constant, i.e. , again we get Fx = 0, the 
same result as the fore mentioned d’Alembert’s paradox.

d ( ) / d 0U t t 

Case 2: If the sphere moves with an acceleration, the resultant horizontal 
force will be

   32
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