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We consider an incompressible inviscid potential flow. The flow is governed 
by Euler’s equation (inviscid) and continuum equation (incompressible).
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For irrotational flow, there exists a velocity potential,     ,
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Substituting it in continuum equation, Lapalce’s equation results
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In addition, if the body force is a potential force, then Euler’s equation is 
rewritten
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That is the general Bernoulli equation, usually used as a dynamic boundary 
condition in potential flow solution, from which pressure distribution can be 
determined when velocity potential is obtained.  
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Furthermore, generally fluid is assumed not able to enter into or flow out 
from the wall of a body, but has to move with it, i.e. body surface is considered 
as impermeable. This is a boundary condition governed on body surface, 
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Besides, at very far field, both velocity and pressure have to be given. 
Also the whole flow field has to be given at an instant, generally when flow 
starts and named as an initial instant.

The far field condition at infinity

, p p    U

The general initial condition
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In summary, equations and conditions which govern potential flows to 
make it well-posed are as follows.
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Laplace’s eq.

Dynamic cond.
(Bernoulli eq.)

Kinematic cond.

Far field cond.

Initial condition

A quadratic term encountered 
at the evaluation of pressure p.
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For 2d flows, a stream function,      , is commonly introduced:
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and, on impermeable body surface, stream function should be a constant, 
that is, fluid can only flow along it, but can not penetrate it:

g 
where,      is a constant, i.e. body surface is a streamline.g


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Now, expressions of the gradient and Laplacian of  velocity potential are 
given below in Cartesian, Cylindrical, Spherical coordinate systems.
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In Cylindrical system (r,θ, z), we have
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In Spherical system (r, θ, φ), we have
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6.2   Superposition Principle

In solution of velocity potential (and stream function in 2d problems), 
Laplace’s equation and the kinematic boundary condition are all linear. 
Thus, velocity potentials (and stream functions) can be superposed to 
form a new potential flow. It is called linear superposition principle. 
Dynamic integral is only applied after completion of solution in order to 
evaluate pressures, and its nonlinearity does not affect the solution.

Therefore, superposition of elementary potential flows will result a new 
potential flow, of which velocity potential, stream function and velocity 
components are just equal to the sum of the ones of  the elementary flows.

In this way, elementary potential flows can be superposed to generate 
a new flow. On the other hand, in principle a complicated flow can be 
resolved into a superposition of several elementary flows.
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Let       and        be velocity potentials of two different planar flows, that is
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Then, their sum gives a new potential flow. The velocity potential is
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In the same way, its stream function is the sum of the other two’s
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Source and Sink

2d Flow：

3d Flow：
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Point Vortex：
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Eg.1：Dipole － Superposition of a point source and a point sink
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Given a point sink at A(-a, 0) with intensity Q, 
and a point source at B(a, 0) with the same 
intensity. Let Φ1 andΦ2, Ψ1 and Ψ2 be their 
velocity potentials and stream functions. 
Please write down their superposed velocity 
potential at point P(x, y).

Solution：The superposed velocity potential is the sum of the ones of a point 
sink at A and a point source at B:
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The stream function is
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Denoteθp the angle between AP and BP. A streamline, on which Ψ= const., 
thusθp = const., is a circle passing through the source point and sink point.
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As               , the distance between the source and the sink tends to zero, the 
intensity needs to be infinitely large to guarantee                                      of 
finite value. That sort of flow is called a doublet flow, or a dipole. M is known 
as moment, pointing from the sink to the source. For small value of ε, we have
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So, velocity potential of the doublet flow can be immediately derived.
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And the corresponding stream function is written as
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Accordingly, velocity distribution is obtained.
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Let Φ be a constant C1, it results an equi-potential line.
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They are the circles with center at  point 
(                ) , and radius          ,  tangent to 
the y-axis at the origin, as the dash lines 
shown in the figure.
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Let Ψ be constant C2, we get a streamline
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Streamlines are circles with centre at point 
(           )，radius         , tangent to the x-axis 
at the origin, as the solid lines shown in the 
figure.
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The velocity potential of the dipole can also be derived in another way.
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where M is the moment

The stream function can be derived in the same way.
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For 3d doublet flow, we can superpose the 3d point source with the 3d point 
sink, that is
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where M is the moment.

Therefore, the velocity potential of the 3d doublet flow is expressed as
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Eg.2：Spiral Flow －superposition of a point source and a point vortex

Given a point source at the origin with intensity Q, and a point vortex at the 
origin with intensity Γ. Let Φ1 and Φ2 be their velocity potentials, Ψ1 and Ψ2 
be their stream functions. Write down the velocity potential and stream 
function of the superposed spiral flow.

Solution： The velocity potential and stream function of the superposed 
spiral flow can be given immediately
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Let the velocity potential and stream function be constants, we get the
equi-potential lines and streamlines

1
Qr C e


 2

Q

r C e
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They are spiral curves and perpendicular with each other at any point of 

intersection. As streamlines are spirals, this sort of flow is call a spiral flow.

The velocity field is as follows
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Now we further consider the flow field with a body in it. On the body 
surface a kinematic boundary condition, i.e. impermeable condition should be 
fulfilled. In the interior of the flow field, Laplace’s equation is still to be 
satisfied. 

If a superposition of elementary flows fulfill the boundary condition, the 
sum of the velocity potentials and the sum of the stream functions of those 
elementary flows give out the velocity potential and the stream function of the 
flow around the body.
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6.3   Potential Flow around a Body

D
U

U

xm

stagnation point 0v 

Dividing 
Streamline

U

 

m

Eg.1：Rankine Half-body Flow — Flow around 2d semi-infinite body

(A superposition of a 2d uniform flow and a 2d point source)
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Solution：Velocity potentials and stream functions of a uniform flow (u 
= U, v = 0) along the direction of x-axis and a point source at the origin 
are known as
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Point Source：

Uniform flow：
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The superposed flow has the velocity potential and stream function.
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Streamlines：
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For different streamlines, constant C will take different values.
As the body surface is impermeable, it should be a part of a streamline.

Velocity field：
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Consider the negative x-axis ( θ = π, x < 0). There exists a point, say A(-b, 
0), where velocity is zero. That point is called a stagnation point.

cos 02 2r ,
m mV U Ur b 
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2
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The streamline passing through stagnation point A(-b, 0) takes a specified 
value for streamline function as follows. 
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Therefore, that streamline is expressed as

sin
2 2
m mU r  

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or

The right part of it can be looked as a body, 
as the diagram shows, known as Rankine 
half-body. At infinity (θ→0 and 2π), the 
upper and lower branches tend to be parallel 
to the x-axis. The distances to the x-axis can 
be evaluated respectively.
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In summary, a superposition of uniform flow and a point source has 
potential function

velocity:

0 02
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stagnation point A:

, 0 0
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m mu U x
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As x→∞, we have u→U, the body surface become a stream tube. The 
mass conservation law tells us that the flow rate equals the point source 
intensity m，that is

6.3   Potential Flow around a Body
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U

 

m

Eg.2: Rankine Half-body Flow

—— A superposition of 3d uniform flow and a point source flow

d iv . s tream lines

stagna tio n  p o in t
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In Cartesian coordinates, the superposed velocity potential is

velocity:
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6.3   Potential Flow around a Body

As x→∞, we have u→U, the body surface become a stream tube. The 
mass conservation law tells us that the flow rate equals the point source 
intensity m. Denote S the cross section area, we have


