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Third Assignment

¢ The assignment can be downloaded from
following website:

Website: ftp://public.sjtu.edu.cn

Username: dcwan
Password: 2015mhydro
Directory: IntroMHydro2015-Assignments

¢ Eight problems

¢ Submit the assignment on March 30" (in English,

written on paper)




Review

* Continuity equation (equation of mass
conservation)

op _ QJF V-V=0
5+V-(pV)—O o

Incompressible flow: V.V =0
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e Stream function: incompressible 2D flow
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Relationship between stream function ¥ and
volumetric flux Q:

The difference in the value of stream function from one streamline to

another is equal to the volume flow rate per unit width between the

two streamlines (i.e., @ .c =¥ ¢ —¥ 4 ,W¥is single-valued function).
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Review

q :ij dl =jB[uCOS(n,y)+VCOS(”»x)]dI

[ [u_+v__dx}dl:jf[udy—vdx]dl=del//=wz—%



Y ERALE 3.4 Stream Function

ong University

Problem 1: Assume the velocity profile is as follows,

determine 7. m X m y
u= R Yy =

27 X+ y° 27 X° +y°

Solution: First, verify that if ¥ exists,i.e., V-V =0

2

V-V=

ou av m N Y =X x*—y
Ox 8y o (x +y ) (x2 +y2 )2
Thus, ¥ exists, and:

]=0

v =] —vdx +udy = f— 4 dx+m 2x ~dy
27 x>+’ 27 x“+y
m dey—ydx: Id(y/x)

272- x2+y2 272' 1+(Z)2
X

= —tg_ll+c

27 X
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Ox 2”1+(X) 27 X7+ y°
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YELAAE 3.4 Stream Function

ong University

Problem 2: Consider a given velocity potential of a flow field:

¢ = 4xy . Solve its stream function.

Solution: The velocity can be determined from the velocity potential

u:%=4y, v=%=4x
Ox oy
. ou Ov .
From the equation above, we get: a+5= 0, so there exists the
stream function.
By definition of stream function:
w = | —vdx +udy = [ —4xdx + 4 ydy 3y
(x,0)  (x,)
= j + J- =-2x"+2y°+C 0.0 R
(0,0) (x,0) (x, 0)

Where C is a constant.



,\:M@x% 3.4 Stream Function

ong University

Problem 3: The velocity distribution of a two dimensional flow is
givenas: u =2xy, v=x’—y°. Determine velocity potential

function and stream function.

ov Ou

Solution: Because Q_ = P 2x - 2x =0, there is velocity potential.
x Oy
¢=Iudx+vdy = _[2xydx+(x2 —y*)dy
(x,0)  (x,y) (x,y) 1
= | + =0+ xP =y )dy=x’y—=y’
(0'.:0) (JO) (x":O)( ’ ) ’ N
And because Z“ + 2" ~-2y-2y =0 ,there is stream function. )
X Y
v = | —vdx +udy = J'—(x2 —yz)dx+2xydy
(x0) () 3 (0, 0)
= j + j :—x——i—xyz—i—C )

(0,0) (x,0)



J:M@x%? 3.4 Stream Function

ong University

Problem 4: The velocity potential of an irrotational flow of an
incompressible fluid is given as below, determine the stream function.

1) ¢=x/(x"+°) (2) ¢:%lnr (m = const)

Solution: (1)

_8¢_(x2+y2)—2x2_ y:—x’ V_8¢_ —2Xxy
ox (X +yh) ()Y ay  (x*+y%)

u

ou 2x(x*+9°) = (¥ =x7)-2(x* + %) 2x 22X —4x’y* —6x*

ax (x2 +y2)4 (x2 +y2)4
v  2x(x*+?) +2xy-2(x* + %) 2y 2x° +4x°y* +6x)"
Oy (x* +y*)* (x* +y*)*
ou ov ) )
Because + = 0, there is stream function Y.

ox Oy




3.4 Stream Function

1 y
d(x*+y)+ =— +
1) (x"+y)+ /() 2ty f )
0 x2+ 2—2 2 x2
As u=Y - _ 2)/ 4 + f'(y) = ~— ,SO:
oy (x* +y?)* (x* +y%)

f'(=0 =  f=C

Thus, the stream function is:

Y
= — +C
'7” xz_l_yz




NETIENY 3.4 Stream Function

G =
i

More convenient with polar coordinates. The relations between
polar coordinates and Cartesian coordinates are:

x=rcos), y=rsmmb, v,k = %’ y, = o¢
or rod
V.V:a(rvr)_l_éve
or 00
Then: rcosf cosé
¢(x>)7)=¢(l”,(9): ’,.2 = r
0@ cos @ 0P sin @
Vr = —=— 5> V& = - — >
or v rof r
o(rv,) _ 0 (_COSQ)_COSQ Ov,  cosd
or or r r* 00 r’

As o(rv,) + OV — (0 ,there is stream function Y.

or 06



3.4 Stream Function

The stream function in polar coordinates is:

cos6’d9+smz¢9dr:_sm<9

r r r

y = v,rd0—v,dr= |-

Select the integral path as: (0,0) = (#,0) = (r,0)




By yEidrd 3.4 Stream Function
8¢ m _ a¢ -0

r:_: R VH_ —
or 2Tr roé

o(rv,)

or

ov,

_|_

Because = 0, there is stream function .
Select the integral path as: (0,0) — (,0) > (7,6)

m

rd0 =0+ C

27r 27

¢/:IVJd9—ﬂ@dr=I




3.5 Momentum Equation

First of all, to derive the equation

Let G = pV, the application of the Reynolds transport theorem

gives:

——“Tde%— H]@PV L [[ VY nas

oV

—”J[a'OV—FpE+V (pVV)}HL

_j”{ Liﬂfﬁ/aggj+p{@£+v vv]}HL

ot

= [ Grar= ][ o i+
ie., j”de-FL mp = d¥ = mp—d%




LTI 3.5 Momentum Equation

Conservation of momentum (Newton's 2nd law

of motion): time rate of change of the momentum of

a body is equal to the net force acting on it

ﬁzmﬁzmd—ﬁz d(mV)

dt dt




Applying conservation of

Control volume (CV)
momentum to a control volume: = _—-. \
/’ \
L odva 9 —"\\
| 1]l A
d Il ’ \\
v = fuar < o |4 B
4 .
“ My J |'\ // dFsurface
v /
rate of change surface body N <t y
of momentum force force &
Control surface (CS)

First term on the right side: H sdA = ”G -ndA = HJ‘V -odV-
MV

Thus: %gipw%zLjyjp%d%zw(pgw.c)d%




TICPY; 3.5 Momentum Equation

Since MV(CV) is arbitrary, thus:

7AY

—=V -6+
'Odt P8

The equation above is the momentum equation




LTI 3.5 Momentum Equation

G =
=

Expression of the surface stresses: 2d-order tensor

O-xx z-xy sz
c=\7, O, T,|=0; (z,]=1,2,3)
sz sz O-ZZ

The first subscript indicates the direction of the normal to the
surface on which the stress is considered; the second subscript

indicates the direction in whigh the stress acts.

(a) (b)



LTI 3.5 Momentum Equation

G =
=

Consider the balance of the fluid
element:

Ly =Ty (i #J)
Thus, the surface stress
tensor is a symmetric tensor.

Because the normal stress is
pressure, then surface
stresses is rewritten as:

O;=—P o g T Ty 7

Ty O
g Ty {L—b— —_y
Oy Oy
~‘— —_— T, [
1 for l. — j " i X
é‘ij =

0 fori#j ' o

(a) (b)




YELAAY 3.5 Momentum Equation

ong University

ou,  ou, | 0oy Ou,  ou, | 0(=pd,+1,)
pl—t+u.— |= +p08 = pP|—TU — |= + 04,
or 7’ ox, ox,

There are seven unknown variables in the momentum equation:
3u,lp, and 3 T However, the number of governing equations

is only four: momentum equation (in three directions) and a

continuity equation. bu Ov  ow
=0

+—+—=
ox oy Oz

To close the equation, it is necessary to build up the
relations between surface stresses and kinematics, i.e.,

relations between stress and strain-rate, which is called

Constitutive Equation.




LTI 3.5 Momentum Equation

G =
=

Relation between stress and strain-rate:
o, =—po,;+T,

Consider Newtonian fluids, from Newton’s law of viscosity, the

shear stress is proportional to the velocity gradient. For a small
fluid element, a general Newton’s law of viscosity can be derived:

- _C ou,

i ijlm a
X
m

Where C;,, is a forth-order tensor coefficient, i.e., with 3* =81
coefficients. From tensor theory, forth-order tensor consists of
second-order tensors, i.e.,:

Co = A46,0,, + 11(8,5,, +6,,5,)

im~ jl

ijlm

81 coefficients are reduced to two: 4 and u



3.5 Momentum Equation

C

ijilm ﬂ‘é‘ij5lm T U (5il5jm + 5im5jl)

Substitute this coefficient into the shear stress equation:

- Ou,
Tij:C' o, 218%50""'“[%4_ u]j

mox ox, Ox, Ox,

l

Relation between surface stresses and strain-rate:

ou ou. ou .
c.=—-pd.+17.=|-p+A—L1|0. + i
ST ( & 8xl] ! ”[ax. 8x.J

J 1




LTI 3.5 Momentum Equation

ou,

ox,

Wi . ou . N 51/!]-
t: .=
= 8% v = ox, Ox,

=0

For incompressible fluids: V -V =

Relation between surface stresses and strain-rate for
incompressible fluids is:

ou. Ou,
c.=—po. +7.. =—po. + iy J
ZJ o U o Iu(axj Ox, )




YELAAY 3.5 Momentum Equation

ong University

Substitute into the momentum equation:

ou . ou .
. =—pod. + L4 /

J 1

Momentum equation: p ou, U, ouy | '@ +pg,
ot ox ox

ol —po.. + Ou, + ou
2:> [Gu. Gu.J Poy ™ H 6xj ox,
p 1 1

+ U . = + ,
or 'V ox, ox P
op 0’u, 5j43 J
= - —+u + +tpg,
ox, dx,0x, 9k ,0x,

__Oop 0'u; |,
ox, “loxox, | P




LTI 3.5 Momentum Equation

G B
=

Momentum equation for incompressible flows:

2
p(%+u‘%J:_a_p+pgi+/uaui (iaj:19293)
X .

2

Ot ' 0x, Ox, 0x
ou, ou, 1 op 0’u,

or| —r+u,—t=-——"—+g,+V—
ot Ox , p Ox, X

(H (D (I (AV) (V)

where v = 1/ p is the kinematic viscosity

Or, in tensor form: p((z_‘; +V. VV] — —Vp + pg + ,uVZV




LTI 3.5 Momentum Equation

Physical interpretation of each item:

Local acceleration

Convective acceleration
(inertia, nonlinear item)

p(;@ T

Pressure gradient

Gravity
(body force)

Viscous diffusion due to molecular
viscosity of the fluid




(&) »#1irt 3.5 Momentum Equation

dohg University

:

Momentum equation can be derived

from the practical enoineerino problems. \ —@

(Pipe flows as shown in the figure)

According to the conservation of

momentum: time rate of change of the
momentum of a CV is equal to the net

force acting on it:

Q: flux
F =-0V,+0,V,+0,V,cos V: velocity
F =QJV,sina S: cross-sectional area

F: forces acting on CV

From conservation of mass:

0=0,+0, = pS§V, =pSV,+pSJ, —

Exp.



YELAAY 3.6 Governing Equations of Fluid Motion

e

Continuity equation and momentum equation form the
basic governing equations of fluid flow.

For incompressible Newtonian fluids, the basic governing equation is:

Continuity equation: V-V=(

Momentum equation: 6—V+ V-VV = —in +g+vV°’V

ot o,

This system of equations has four unknowns: three u; and
one p.The number of the governing equations is four, so
the system of equations is closed.

This is so-called Navier-Stokes equations, NS equations
for short.



NS YT IERT 3.6 Governing Equations of Fluid Motion
I

In vector form:

ou oOv ow
+—+—=0
ox Oy Oz

Continuity:

x-component: +tu—+v—t+w—=—"-—"-+Vv

ov ov ov ov 1 op o’v 0v 0%
y-component: +tu—+v—+tw—=———+Vv Tt =+t 1|tg,
ox~ oy° Oz

ow ow ow ow 1 op o'w O'w 0w
z-component: +u +tVv—+W—=———=+V Tt ——t+t— |t4.
Ot ox oy Oz p Oz ox~  oy" 0Oz

If the gravity is the body force,then g, =¢,=0, g.=-¢




B\ Y EAAAY 3.6 Governing Equations of Fluid Motion

Or denoted by Einstein notation:

ou; _
ox,
%+ 81/! B _5_p+ N 82u.
Plior "Yax, )T o, PR
(I) (1) (1II) V) (V)
ou ou 1 0 O0°u
Or: —+u, —=- p+gl+v :

where v = u/p is the kinematic viscosity.




YFELAAY 3.6 Governing Equations of Fluid Motion

ong University

The physical explanation of each item in NS
momentum equation:

(I) local acceleration;

(II) convective acceleration (inertia, convection, nonlinear

term of the equation);
(III) pressure gradient;

(IV) volume force or gravity;

(V) viscous diffusion of momentum due to molecular

viscosity of the fluid.




e

YELAAY 3.6 Governing Equations of Fluid Motion

Cartesian/Rectangular Coordinates (x, y, z)

Cylindrical Coordinates (r,0, z)




NS equations in Cylindrical Coordinates (r,6, 2):

Continuity:

r-component:

f-component:

z-component:

10(ru,) 10u, ou,

YFELAAY 3.6 Governing Equations of Fluid Motion
ﬁ.

r or r 00 Oz
2
ou, fu ou, L Y ou, u, ‘u, ou, 10op
Ot or r 060 r Oz p or
Ty i(li . ))JF 1 ', 2 8u9+52ur N
or\rors ) T a0r a0 ez | Y
ou, oy ou, 7 ou, LWty ou, __ 1L op
ot “or r 00 r T 0z pr 00
+ v i(li ru )j+ L 0%u, L +82u9 +
or\rors ) T80 T a0 oz | °
6uz+ur 8uz+u0 ou, Z@uz __1op
Ot or r 06 0z p Oz
1 0°u. 0’u

1 8( 8uzj
+v|——|r +——=+
r or or r- o6



TIPS 3.6 Governing Equations of Fluid Motion
I

NS equations specifies the motion of real fluids. To simplify the
problem, we consider the ideal fluids first. Namely, the fluids
have no viscosity and their viscosity coefficients are 0, u = v = 0.

Then, NS equations can be simplified as:

a—V+V-VV:—le+f, V-V=0

ot yo,

This governing equation is called Euler equation for ideal fluids.

Because: V.W:V(%j—Vx(VxV):V(%]—VXQ=V(%j—2me
g‘hen, E.uler equation can [0V v (V_zj Vs —le L f
¢ rewritten as: Ot 2 o,

This form of Euler equation is called Lamb equation.



YFELALY 3.6 Governing Equations of Fluid Motion

ong University

vx(Vxv)=| " v W] _ou _W(%_G_Wj Pl D[, u(@_%j_v ow_v|r
ox oy oz ox oy oz ox oy 0z ox oy oz

o(u’ +v* +w) (1@# ou auﬂa [18(u2+v2+w2) [Gv 1 ov? awj} [18(u2+v2+wz) [&v ow 1awzj]~
- + + 4| — - ‘ - k

2 ox 2 oy ox 2 0y oz

O +vi+w )= O(u*+vVi+w = O(u+v+w' )~ ou Ou ou \- ov  Ov ov |- ow  ow ow )~
=l—|—|i+—| ——— | j+—| ———— |k |- || u—+v—F+w— it u—+Vv—+Ww— | j+| u—+Vv—+w— |k
ox 2 oy 2 0z 2 ox Oy 0z ox oy Oz ox 0oy oz




BT IEDT 3.6 Governing Equations of Fluid Motion

Gradient V — a ’ a ’ a — a ’ a ) a — 8 (l = 1, 2, 3)
ox Oy Oz ox, Ox, Ox, ) Ox
0 0 O 0 (9 ow O
Divergence V- -V=|— — — [-(u,v,w)= u ov. ow_ou
ox Oy 0Oz Ox 8y Oz ﬁxl.
ik
Curl  viv=|l 2 ° [@_w@_] (ia_wj (i@_jk
ox 0oy Oz oy Oz 0z Ox ox Oy
u vow e v

Convective

2
: v.vv=v| ~Vx(VxV)=V| —|-VxQ
acceleration 2




