

Introduction to Marine Hydrodynamics (NA235)

Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering

Shanghai Jiao Tong University

Aain problems in the assignment:

No. 2, 3, 6

Who did well:

吴华坚

上海交通大学 Shanghai Jiao Tong University

Solution:

About 1st Assignment

Problem No. 2

Determine the force F to pull the plate

F equals the shear force T:

 $T = \mu \cdot A \cdot du / dy$ = 0.86 × (2 × 0.5 × 0.5) × $\frac{1}{0.02}$ = 21.5N

About 1st Assignment

Problem No. 3

dynamic viscosity *µ*

Write the expression of the moment M

Select a circle of the disk with a radius *r* and a width *dr*, the shear stress on it can be written as:

$$\tau(r) = \mu \frac{\omega r}{\delta}$$

The moment is (=force \times arm of force):

$$dM = \underline{\tau(r)} \cdot 2\pi r dr \cdot r = \frac{2\pi\mu\omega}{\delta} r^3 dr$$

The total moment is the integral of dM:

$$M = \int dM = \frac{2\pi\mu\omega}{\delta} \int_0^{d/2} r^3 dr = \frac{\pi\mu\omega d^4}{32\delta}$$

About 1st Assignment

Problem No. 6 Determine the shear stress

Velocity gradient:

Let y=R-r,
$$u(y) = C(1 - \frac{(R-y)^2}{R^2}) = C \cdot \frac{2Ry - y^2}{R^2}$$

$$\tau = \mu \frac{du}{dy} = C\mu \cdot \frac{2R - 2y}{R^2} = \frac{2C\mu}{R^2}r$$

Rotational and irrotational flows

rate of rotation
$$\boldsymbol{\omega} = \frac{1}{2} \boldsymbol{\nabla} \times \mathbf{V} = \frac{1}{2} \boldsymbol{\Omega}$$

Vorticity $\Omega = \nabla \times \mathbf{V} = 2 \boldsymbol{\omega}$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u & v & w \end{vmatrix} = \underbrace{\left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z}\right)}_{2\omega_x} \vec{i} + \underbrace{\left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}\right)}_{2\omega_y} \vec{j} + \underbrace{\left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right)}_{2\omega_z} \vec{k}$$

 $\Omega = \left(\Omega_x, \Omega_y, \Omega_z\right) = 0$

Velocity potential

Irrotational $\Leftrightarrow \nabla \times V = 0 \Leftrightarrow \phi \Leftrightarrow$ Potential flow

$$\phi(x, y, z; t) = \int u dx + v dy + w dz$$

$$\frac{\partial \phi}{\partial x} = u$$

$$\mathbf{V} = \nabla \phi, \qquad \qquad \frac{\partial \phi}{\partial y} = v$$

$$\frac{\partial \phi}{\partial z} = w$$

- Fluid dynamics: laws governing fluid motion (e.g., conservation of mass, Newton's laws of motion)
- System and Control volume

System: a collection of matter of fixed identity (always the <u>same</u> fluid particles), which may move, flow, and interact with its surroundings.

Material volume: a volume that contains the same fluid as it moves and deforms following the motion of the fluid.

上海交通大學

Material surface: an enclosing surface of a material volume; no fluid particles can cross it.

<u>Control volume</u>: a volume in space (a geometric entity, independent of mass) through which fluid may flow.

<u>Control volume</u>: a volume of fluid in a flow field, usually fixed in space, to be <u>occupied</u> by different fluid particles at different times.

上海交通大寧

<u>Control surface</u>: imaginary or physical enclosing surface of a control volume, fluid particles can cross it.

• Reynolds Transport Theorem (RTT)

上海交通大学 Shanghai Jiao Tong University

3.3 Continuity Equation

Continuity Equation: conservation of mass (mass of a system is neither be created nor destroyed)

In RTT equation, if the quantity is mass, i.e., $G = \rho$, then:

L.H.S.
$$\frac{d}{dt} \iiint_{MV} \rho d \mathcal{V} = \frac{d}{dt} (\text{mass in } MV) = 0$$

(From the definition of MV: it always contains the same fluids)

R.H.S.
$$\frac{\partial}{\partial t} \iiint_{CV} \rho d \mathcal{H} + \iint_{CS} \rho V \cdot n d A$$
$$= \underbrace{\iiint_{CV} \frac{\partial \rho}{\partial t} d \mathcal{H}}_{CV \text{ is stationary}} + \underbrace{\iiint_{CV} \nabla \cdot (\rho V) d \mathcal{H}}_{\text{by Gauss theorem}}$$

上海交通大学 Shanghai Jiao Tong University

3.3 Continuity Equation

Because the control volume (CV) is arbitrary, then:

$$\iiint_{CV} \frac{\partial \rho}{\partial t} d\mathcal{V} + \iiint_{CV} \nabla \cdot (\rho V) d\mathcal{V} = 0 \quad \Rightarrow$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = 0$$

This is the continuity equation

Further, substituting $\nabla \cdot (\rho \mathbf{V}) = \mathbf{V} \cdot \nabla \rho + \rho \nabla \cdot \mathbf{V}$ into the equation

we get:

$$\frac{\partial \rho}{\partial t} + \mathbf{V} \cdot \nabla \rho + \rho \nabla \cdot \mathbf{V} = \frac{D \rho}{D t} + \rho \nabla \cdot \mathbf{V} = 0$$

$$\frac{D\rho}{Dt} + \rho \frac{\partial u_i}{\partial x_i} = 0$$

3.3 Continuity Equation

For an incompressible fluid:

the density of a fluid particle is invariant with time $\Leftrightarrow \frac{D\rho}{Dt} = 0$

Thus, its continuity equation is:

$$\nabla \cdot \mathbf{V} = 0$$

(i.e., divergence of velocity is zero for incompressible flow)

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

よ海交通大学 Shanghai Jiao Tong University

3.3 Continuity Equation

The continuity equation can <u>also</u> be derived from conservation of mass. Take a region Ω from the flow field, its surface is *S*. The conservation of mass is expressed as:

Increase (decrease) of the fluid mass = Mass flux flows into (out of) S per unit time

3.3 Continuity Equation

Derived from conservation of mass, the continuity equation is also called equation of mass conservation. Both real and ideal fluids should satisfy continuity equation.

Several expressions:

上海交通大學

Compressible, unsteady flow:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = 0$$

Compressible, steady flow: $\nabla \cdot (\rho \mathbf{V}) = 0$

Incompressible, unsteady flow:

Incompressible, steady flow:

 $\nabla \cdot \mathbf{V} = 0$

 $\nabla \cdot \mathbf{V} = \mathbf{0}$

よ海交通大学 Shanghai Jiao Tong University

3.3 Continuity Equation

Flows in a streamtube

 S_1 , S_2 are cross-sectional areas, V_1 , V_2 , ρ_1 , ρ_2 are average velocities and densities of the cross sections. The continuity equation (equation of mass conservation) is:

$$\rho_1 \mathbf{V}_1 S_1 = \rho_2 \mathbf{V}_2 S_2$$
or
$$\rho \mathbf{V} S = const$$

For incompressible flow:

$$\mathbf{V}_1 \, \boldsymbol{S}_1 \,=\, \mathbf{V}_2 \, \boldsymbol{S}_2$$

3.3 Continuity Equation

Application

The velocity field of a three-dimensional flow is: Z

$$u = x^2 y, \quad v = 4 y^3 z, \quad w = 2$$

Is this flow a real flow?

The real flow for an incompressible fluid must satisfy the continuity equation: $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial v} + \frac{\partial w}{\partial z} = 0$

From the given velocity field:
$$\frac{\partial u}{\partial x} = 2xy$$
, $\frac{\partial v}{\partial y} = 12y^2z$, $\frac{\partial w}{\partial z} = 2$

Thus:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 2 x y + 12 y^2 z + 2 \neq 0$$

So this flow is not a real flow

Velocity potential for irrotational flow

Stream function — for incompressible flow

Definition

上海交通大學

If functions P(x, y), Q(x, y) have continuous first-order partial derivatives in a closed region and its boundary, then the <u>necessity</u> and <u>sufficiency</u> for the line integral $\int P dx + Q dy$ which is pathindependent is: $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$

3.4 Stream Function

According to the continuity equation, for an incompressible twodimensional flow: $\partial u = \partial v$ $\partial u = \partial u = \partial (u = \partial v)$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \qquad \Longrightarrow \qquad \frac{\partial u}{\partial x} = \frac{\partial}{\partial y} (-v)$$

Let P = -v, Q = u, then there is a integral function: $\psi = \int P dx + Q dy = \int -v dx + u dy$

which is path-independent. $\psi = (x, y, t)$ is called stream function. —

$$\int \frac{\partial \psi}{\partial x} dx + \frac{\partial \psi}{\partial y} dy = \int -v dx + u dy$$

$$\begin{cases} \frac{\partial \psi}{\partial x} = -v \\ \frac{\partial \psi}{\partial y} = u \\ \frac{\partial \psi}{\partial y} \end{cases}$$

The conditions of stream function:

For ideal or real fluids, if they are **incompressible** and **two-dimensional** flow, then there are stream functions;

For **compressible two-dimensional** flows, only if the flow is **steady**, there also exists stream functions.

Properties of stream function:

I) The relationship between steam function and streamlines: lines of constant stream function are streamlines of the flow, i.e., value of the stream function is constant along a streamline.

$$d\psi = \frac{\partial \psi}{\partial x} dx + \frac{\partial \psi}{\partial y} dy = -v dx + u dy$$

Thus, if Ψ = constant, $\frac{dx}{u} = \frac{dy}{v}$, which is the streamline equation

Notice! Stream function only exists in continuity equation of <u>two</u>-dimensional flows; <u>but</u> streamlines exist in all possible flows.

2) Relationship between stream function Ψ and volumetric flux Q:

上海充盈大學

The difference in the value of stream function from one streamline to another is equal to the volume flow rate per unit width between the two streamlines (i.e., $Q_{AC} = \psi_C - \psi_A$, ψ is single-valued function).

3) For incompressible, irrotational, two-dimensional potential flows, the velocity potential and the stream function are all harmonic functions, both satisfy Laplace's equation.

上疳充逐大學

A. Incompressible two-(three-)dimensional potential flow (irrotational)

B. Incompressible two-dimensional potential flow (irrotational)

2D incompressible
$$\Rightarrow \quad u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x}$$

2D irrotational $\Rightarrow \quad \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = 0$

$$\Rightarrow \quad \nabla^2 \psi = 0$$

4) Flow net: consists of a family of streamlines and equipotential lines (lines of constant velocity potential) for any incompressible 2D potential flows.

上游交通大學

ona Universitv

$$\nabla \phi \equiv V \perp$$
 equipotential lines
 \Rightarrow streamlines \perp equipotential lines

For a 90° bend (the velocity is inversely proportional to the streamline spacing):

$$V \approx \frac{\Delta \phi}{\Delta n} \approx \frac{\Delta \psi}{\Delta s}$$

 Δn : distance between two adjacent equipotential lines

 Δs : distance between two adjacent streamlines

Velocity near the inside corner is higher () than the velocity along the outer part of the bend.

Flow net lines close together \Rightarrow high velocity; Flow net lines far apart \Rightarrow low velocity.

3.4 Stream Function