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®» Pathline equation:

» Streamline equation:
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* Motion of fluid elements

Element at 7, Element at 1, + &1

General Translation Linear
motion deformation

Review
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Review

V. =[U+w,dy+odz+ e dx+e dy+e,dz]i
(1)

(2) (3) (4)

&
Translation (1)) @ B
+ > (rigid body motion) v

Rotation (2)
General motion =+ + c b
(change in volume) D

+ A B

| Angular deformation (4) (change in shape)
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Shear strain rate — angular deformation
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NP 2.3 Deformation and Rotation of
* P ey Fluid Elements

i

. OU,
shear rate tensor E = & = l ou, 4
2| oX j OX.

. - e — 1 o e
rate of rotation w=w,l + o, ] + oK = EC (vorticity)

vorticity { =Q =V xV (curl of velocity)
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S i a s 2.3 Deformation and Rotation of
e ongUniversity Fluid Elements

Helmholtz decomposition can be written in tensor form:

Let or =dxi+dyj+dzk

;++ ® X Or

Rate of translation Strain rate Rate of rotation/angular velocity
o ' \




y#zar¢ 2.4 Rotational and Irrotational Flows
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Definition: If the vorticity in a flow field is zero, Q=0 the fluid

particles are not rotating, the flow in that region is called
irrotational. Otherwise, the flow in that region is called
rotational.

Q=(2, 2, 2,)=0

Z

©
—P> ——— -
————— - -
B INS————N @ ------- > @
. _ _ Irrotational outer flow region
; Velocity profile
| — Rotational boundary layer region

(7

I

\
Wall Fluid particles rotating
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Application 1

The irrotational flow condition in the xy-plane in Cartesian
coordinates is: &V _U _,

ox oy -
Derive the expression of irrotational flow condition in
plane polar coordinates.

Solution: the relationship between Cartesian coordinates (X, y) and
polar coordinates (r,0) is:

X=rcosf), y=rsiné

where r=\x"+y> 6= arctan(%)

The relationships between the velocities in
the two coordinates system are:
U=V cos@d—-v,sind

.01

V=V, sinfd+V,cost



The relationships between the differential operators are:

0 = 0 6)( g ay—cos<92+sin¢9£

or oxor ay or OX

0 _0 8X 0 o ——rsin¢9£+rcosé’i
89 OX 89 oy 06 OX oy

Thus:
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The irrotational flow condition in Cartesian coordinates is:

N__,
ox oy
Transformed to polar coordinates:
ol = (cos 92 —sin Qi)(vr sin@+V, cos )
OX or roo
= siné’cosé’a\/r +V_cos@-0—sin’ @ N Ve sin 6 cos &
or rood r
+cos’ 9%+V9 c0s0-0—sinOcos 00 + Y2 6in?
or rogd r
ou 0 0
— =(sinfd—+cosd——)(v, cos@d -V, sin
( ar r_@e)( r 0 )
=sin(9cosﬁavr +V_sin@-0+cos’ & Ny _ V. sinfcosd
or rog r
oV ov, V

—sin® —2—v,sin@-0—sin @ cos §—% ——Lcos’ &
or rod r




y#zare 2.4 Rotational and Irrotational Flows
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=
@—a—u—(cos 6 —sin g)ﬂ-l‘(Slﬂ 6 —cos H)——(sm 0 + cos’ N, =0
oXx oy or r roé
ov, V, oV
l.e., C+ L~ =0
or r roé
o(rv oV
Or, (V) =0
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Application 2

For a two-dimensional flow field, the velocity is given as:
U=-my, V=oX
Is this flow rotational or irrotational? Will the fluid element deform or

not!? iy 4
Solution: y = wr
szg_a_uzza), QX:O, Qy:O K T T
ox oy i :
The flow is rotational &/jj
& XX & yy = & 17 0
(9 Xy — g XZ — g A — O

There is no deformation of the fluid element. This is used to
describe the flow in the core region of a tornado. —




y#zar¢ 2.4 Rotational and Irrotational Flows

Application 3
A two-dimensional flow field the velocity is given as: ,

I I X

27 x*+ y?’

e

27 X° + y?
Is this flow rotational or irrotational? Will the fluid element deform

or not!
Solution: Uy s

o, =0,=0, 0, =—( v u):O

2 0OXx 0y

I Xy
Eyy = > —=-¢, 0, €, 0

2 (X" +Yy7)
exyzgyxzeZX:O

The flow is irrotational but deformed, can be used to describe the
flow out of the core region of a tornado.




y#zar¢ 2.4 Rotational and Irrotational Flows

Not all flows with circular streamlines are rotational

n: rotational, no

——

o describe the flow

‘a tornado.

tational, deformation;

the flow out of the
rnado.




iy v#zare 2.4 Rotational and Irrotational Flows

Application 4

V max
Consider a linear flow: U = T(z y—y

" /h),

v=20

Solution:
Ex =€y =&; =0
1 6\/

o, =, =0, wz_i(éx 8;)_ rF]"@""(l y/h)

1O, A Ve Yo
T 8y)_ =)

This is a rotational flow with deformation.
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Application 5

i

Consider a uniform linear motion of a fluid element:

u=v,=const, v=0

Solution:
Ex =Ey =&, =0
Ey =&y =5 =0
o, =0,=0,=0

This is a irrotational flow without any deformation.




2.5 Velocity Potential

¢ Velocity potential

for irrotational flow
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2.5 Velocity Potential

According to Green's theorem: let P, (J, R be functions of (x,y,2)
and have continuous first-order partial derivatives

oP oP 0Q 0Q OR OR

oy > oz S oz~ ox ~ox dy

9

in a simple closed curve and its bounded region. If the following
equations satisfied in the region:

(60 4R ))
0z oy
R _ P |
O X 01
oP 00
Y o)

Then there must be a
function defined by
the line integral
below. This function is
potential, and is called
potential function:

F(x,y,z)

S>> F(X,Y,2) =] Pdx+Qdy + Rdz




YEXAAE 2.5 Velocity Potential

The integral is not path-dependent, and has following relationships:

o F _
0 X
oF ol
oy
o F _ R
012 J
oF oF

F(X y,Z) j4dX+Edy+6_zd




2.5 Velocity Potential

For an irrotational flow, =0, thus:

ov _ow. 0Q _ oR
0z 0y 01 oy
ow  ou comparing OR 0P
= > =

OX 01 < > O X 01 (
ou _ov oP  0Q
ay  Ox l oy  0x |

u— P

v > Q

w— R




2.5 Velocity Potential

Thus, there is a function:

d(X,VY,z;t) = Judx + vdy + wdz

With the relationships: 0 ¢ ~ 0
O X
—a¢:V> i°e’V:V¢
oy
0@ W
017

@ is called the velocity potential. A flow has the velocity potential
is called potential flow.

Irrotational << V XV = 0 & ¢ <> Potential flow




2.5 Velocity Potential

Significance of velocity potential:

Velocity potential ¢ is a scalar
quantity with one component
only:

d(X,V,.z2;t) = [udx + vdy + wdz

VelocityV is a vector
quantity with three
components:

09 _
— =
09 _
v
09 _
—— =

u

vV op

W

Irrotational velocity field <> Potential flow




YERAAS 2.5 Velocity Potential

Application

The velocity field of a rotational flow is given by:

u=2(x—-a)y, v:(x+a)2—y2
where a is a constant. Consider an irrotational flow, its linear strain rate
and shear strain rate are identical to those in rotational flow. The velocity
at the origin is 0, i.e.,, when x=y=0 ,u=v=0. Determine the velocity
expression and the velocity potential of this irrotational flow.

Solution: for the given rotational flow

: : ou oV
linear strain rate: ¢, =—=2 =—=

, £, =— =2 a
OX Yooy Y @)
1{ov ou ov ou
i L g =—| —4— |=2X = — =4
shear strain rate: ¢, 2(8x 8yj ox oy (b)

The linear strain rate and shear strain rate of the irrotational flow are the
same, and the irrotational flow has to satisfy:

8v_8u:O (<)
0 X oy
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e

From (c)+(b) : 2—\; =2X je, v=xX+f(y)

Substituting it into (a): f'(Y)=-2y, ie, f(y)=-y +C,

From (c)-(b): 2—;=2X i.e, U=2Xy+g(X)
Substituting it into (a): g'(x)=0, e, g(x)=C,

x,»)

A
C, and C, are integral constants. When X=y=0 U=V=0
= (C,=C,=0 0.0
.0
Thus, the velocity is: U = 2Xxy, Vv = x’ -y’ !

The velocity potential is: ¢:_[U dx+vdy = jzxydx +(x*—y?)dy

_(x,O) (X,y) B (X.¥) ) 5 2 | B
S o e -y dy

(0,0)  (x,0) (x,0)



Review: Key Points in Chapter 2
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o Two ways of describing a fluid flow:

Lagrangian description, Eulerian description

e Material derivative: D_) - o) +(VeV)( )

(
Dt o

—

- . dvparlicle B d\_}f B dv(xpanicler Yparliclef zparticler t)
apar‘[icle _ dt _ dt _ dt

B ﬂg 4 3\7 d)'(particla N r_ri\:f dy|:}::1rti(:le N fi\7 dzpanicle
Jt dt 8)":par‘[icle dt ayparticle dt azpanicle dt

D vz dV 9V L YV, N gV . BYY,
i ro o Ly — — o v .
=) Apariciel™ dt ot X 9y 91

\ _J
\

v R

Lagrangian Eulerian



dx dy dz

o i ion: dt
Pathline equation: UV w
e Streamline equation: ax = dy = a
u Vv W

Pathlines and streamlines are identical in steady flows




Motion or deformation of fluid elements

=1V><V=wXT+wyT+wZIZ:[%—@jf+(a—u—@)T+[@—6—ujlz
oy

2 0z 0L OX

oX oy

Helmholtz decomposition

V=V, +E-or+oxor E=¢ = [auwau"]

Rotational and irrotational flows
Q=(2, 2, 2,)=0
Velocity potential: irrotational flows

V =V, @(XY,z;t)=]udx+vdy+wdz




Chapter 3
Fluid Dynamics

Fluid dynamics: study of the motion of fluids

considering the forces and moments that cause the

motion.




r#zdar# 3.1 Representation of Fluid Flow

Two approaches in fluid dynamics: system approach and
control volume approach

(1) System (material volume)
approach: follows the fluid as it

moves and deforms; no mass crosses

the boundary (Lagrangian description)

(2) Control volume approach:
. . . |

considers the changes in a certain by

fixed volume; mass can cross the

boundary (Eulerian description)

Reynolds Transport Theorem (RTT) [




NSYTET 3.1 Representation of Fluid Flow
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Svstem: a collection of matter of fixed identity (always
the same fluid particles), which may move, flow, and

interact with its surroundings.

J G(x,y,z, 1) dV

U)

Material volume: a volume that

contains the same fluid as it moves and

deforms following the motion of the fluid.

Material surface: an enclosing surface of

a material volume; no fluid particles can

Cross it.
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YERAAE 3.2 Reynolds Transport Theorem

ontrol volume: a volume in space (a geometric entity,

independent of mass) through which fluid may flow.

Control volume: a volume of fluid

in a flow field, usually fixed in space,

to be occupied by different fluid

particles at different times.

Control surface: imaginary or

physical enclosing surface of a control

volume, fluid particles can cross it.

Mass Mass

entermg leaVIHg

_——“

| Control volume

—>/\ o

n= ~ =
outward R ’ \
normal S -
| )
n

Mass
leaving

Bnet = Bout_ Bin = J pb‘_/)- ; dA
CS



BN L dAE 3.2 Reynolds Transport Theorem
'

d¥ System

. dv,
Fixed control

volume \

Fixed control volume

occupies o and e

System at time f occupies

volumes o and e

o : System at time ¢ + At
/ occupies volumes o and e

-

————




System and control System at
volume identical time 1 + At
at time 7 Control volume T
\ == attime ¢ + Ar [
I " Iy '
i Y 4
[o y i: [
EeSesa=aso= = II___ e e T | |I_—_T_—_ =1, =
I il kS ;
I: :l "'I \.
|t :l | i JIr
|:'__________“________________Il |‘r-r _______________________ __:(
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T TrT 3.2 Reynolds Transport Theorem

G =
=

Reynolds Transport Theorem Control volume at time £ + Ar
(CV remains fixed in time)
Any quantity G satisties the relationship between D SR e Al Solie)
and control .Volume at time ¢
material volume and control volume: (shaded region)
System at time 7 + At
(hatched region)
=[] caw = Z|[[ Gdv + [[_GV -ndA e AN
dt JJImv ot Jddov JJcs 1 \
rate of change of the  local rate of change of the net out-flux of the : \ N\
property G within property within the fixed property across the ~—— ‘

to coincide with the material
volume at that instant (1)

the material volume  control volume that happens ~ €ntire control surface I %

p = density of fluid

G = an intensive property of fluid Inflow during At

MV = material volume that happens to coincide with CV at time t

Outflow during At
CV = control volume (fixed in space)

CS = control surface At time : Sys = CV

. Attimet+At: Sys=CV -1+11
n = unit outward normal to CS Y



Y EAAAE 3.2 Reynolds Transport Theorem

For a material volume, after a time period dt:

HAIVIG(X’t)dV} = [[] 6(xt+dt)dv = jﬂ{ xt+dt+%}dv

trdt MV (t+dt) MV (t+dt)

The change ofm.ateri.a! I_U ( ):.[A.{;“ +J‘AJ\'/J‘ ):-“CJ\';"( )+£( )V -ndSdt

volume in dt is:
MV (t+dt)

Thus:
us omit 2" order

DHG(X»t)dV} [l [ (x,t) +—dt}dv quantities

t+dt MV (t+dt)

5 /,f"ﬂ'\
_Hj[ (x,t) +—dt}dv +jj[ +7%}V-nd8dt Y dv@\--_.\

_mG xtdv{m dV+_UG (x,t)V ndS}dt j:; Z dA;K‘

Control o V
. . volume (CV) ~
RTT can be derived from the equation above: AN 4 /‘j
ol

%IHGM{H de} —”jedv} dt=m.%dV+”GV-ndS Control surface (CS)

t+dt MV



Lagrangian
description

Eulerian
description

System
analysis

RTT

Control
volume
analysis




3.3 Continuity Equation

Continuity Equation: conservation of mass (mass of a
system is neither be created nor destroyed)

In RTT equation, if the quantity is mass, i.e.,G = p , then:
d d .
L.H.S. EIHMV POV = a(mass in MV )=0

(From the definition of MV: it always contains the same fluids)

RHS. S ([ pdv-+[[ p¥-ndn

- 11 v+ 1LV (v v

~
by Gauss theorem

. Y .
CV is stationary




