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Review

Pathline equation:

Streamline equation:
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• Motion of fluid elements

Review
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Shear strain rate – angular deformation 

εxy >0, AOB decreases

Rate of rotation
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ωz >0, counterclockwise rotation
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Rotation with/w.o. deformation?
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2.3  Deformation and Rotation of 
Fluid Elements
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Helmholtz decomposition can be written in tensor form: 

d d dx y z   r i j kLet

0      V V E r ω r

Rate of translation Strain rate Rate of rotation/angular velocity

2.3  Deformation and Rotation of 
Fluid Elements
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2.4  Rotational and Irrotational Flows

Definition: If the vorticity in a flow field is zero, , the fluid
particles are not rotating, the flow in that region is called
irrotational. Otherwise, the flow in that region is called
rotational.

0
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0, 0, 0z x y
v u w v u w
x y y z z x
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The irrotational flow condition in the xy-plane in Cartesian 
coordinates is:  

Derive the expression of irrotational flow condition in 
plane polar coordinates.

0v u
x y
 

 
 

Solution: the relationship between Cartesian coordinates          and 
polar coordinates         is:( , )r 

( , )x y

cos , sinx r y r  

2 2r x y  arctan( )y
x

 where

The relationships between the velocities in 
the two coordinates system are:

cos sin
sin cos
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Application 1

2.4  Rotational and Irrotational Flows
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The relationships between the differential operators are:

cos sin

sin cos

x y
r x r y r x y
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2.4  Rotational and Irrotational Flows
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The irrotational flow condition in Cartesian coordinates is:  

0v u
x y
 

 
 

Transformed to polar coordinates:
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2.4  Rotational and Irrotational Flows
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i.e.,

Or,

2.4  Rotational and Irrotational Flows
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For a two-dimensional flow field, the velocity is given as: 

Is this flow rotational or irrotational? Will the fluid element deform or 

not?

Application 2

,u y v x   

Solution:

2 , 0, 0z x y
v u
x y

 
       

 

The flow is rotational
0

0
x x y y z z

x y x z y z

  

  

  

  

There is no deformation of the fluid element. This is used to 
describe the flow in the core region of a tornado.

2.4  Rotational and Irrotational Flows
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A two-dimensional flow field the velocity is given as: ，

Is this flow rotational or irrotational? Will the fluid element deform 

or not?
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The flow is irrotational but deformed, can be used to describe the 
flow out of the core region of a tornado.

2.4  Rotational and Irrotational Flows

Application 3

Solution:
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Line vortex: irrotational, deformation;
used to describe the flow out of the
core region of a tornado.

Solid-body rotation: rotational, no
deformation; used to describe the flow
in the core region of a tornado.

2.4  Rotational and Irrotational Flows

Not all flows with circular streamlines are rotational
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  Consider a linear flow: 

 

This is a rotational flow with deformation.

2.4  Rotational and Irrotational Flows

Application 4

Solution:
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Consider a uniform linear motion of a fluid element:

2.4  Rotational and Irrotational Flows

Application 5

Solution:

This is a irrotational flow without any deformation.



Shanghai Jiao Tong University
2.5 Velocity Potential

 Velocity potential
—— for irrotational flow

 Stream function
—— for incompressible flow
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According to Green's theorem: let P, Q, R be functions of (x,y,z) 
and have continuous first-order partial derivatives 

,P P
y z

 
 

, , , , ,     
   

Q Q R R
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in a simple closed curve and its bounded region. If the following 
equations satisfied  in the region: 

Then there must be a
function defined by
the line integral
below. This function is
potential, and is called
potential function:

F(x,y,z)
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2.5 Velocity Potential
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The integral is not path-dependent, and has following relationships:
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2.5 Velocity Potential
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For an irrotational flow, ω=0, thus:
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2.5 Velocity Potential
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Thus, there is a function:

( , , ; )x y z t udx vdy wdz    
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With the relationships:

 Vi.e,

 is called the velocity potential.A flow has the velocity potential 
is called potential flow.

2.5 Velocity Potential

V o        Irrotational Potential flow
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Significance of velocity potential:

Velocity potential  is a scalar
quantity with one component
only:

Velocity V is a vector
quantity with three 
components:

( , , . ; )x y z t udx vdy wdz    
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2.5 Velocity Potential

  Irrotational velocity field Potential flow



Shanghai Jiao Tong University

shear strain rate: (b)

linear strain rate: (a)

1 2 4
2xy

v u v ux x
x y x y


    

          

The velocity field  of a rotational flow is given by:
   2 22 ,    u x a y v x a y

where a is a constant. Consider an irrotational flow, its linear strain rate
and shear strain rate are identical to those in rotational flow. The velocity
at the origin is 0, i.e., when , . Determine the velocity
expression and the velocity potential of this irrotational flow.

0x y  0u v 

2 , 2xx yy
u vy y
x y

  
    
 

The linear strain rate and shear strain rate of the irrotational flow are the 
same, and the irrotational flow has to satisfy:

0v u
x y

 
 

 
(c)

2.5 Velocity Potential
Application  

Solution: for the given rotational flow 
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From (c)+(b) : 2v x
x





i.e., 2 ( )v x f y 

Substituting it into (a): 2
1( ) 2 ,             ( )     f y y f y y C

From (c)-(b): 2u x
y





2 ( )u xy g x 

Substituting it into (a): 2( ) 0,                ( )  g x g x C

C1 and C2 are integral constants.  When                ,0x y  0u v 

1 2  0  C C

Thus, the velocity is: 2 22 ,u x y v x y  

The velocity potential is:
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2.5 Velocity Potential

i.e.,

i.e.,

i.e.,
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 Two ways of describing a fluid flow: 

Lagrangian description, Eulerian description 

 Material derivative:

Review: Key Points in Chapter 2

             




t

D
D t
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Lagrangian Eulerian
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Review: Key Points in Chapter 2

 Pathline equation:

 Streamline equation:

dx dy dz dt
u v w
  

dx dy dz
u v w
 

Pathlines and streamlines are identical in steady flows 
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• Motion or deformation of fluid elements

• Helmholtz decomposition 

• Rotational and irrotational flows

• Velocity potential: irrotational flows
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Review: Key Points in Chapter 2
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Chapter 3 
Fluid Dynamics

Fluid dynamics: study of the motion of fluids
considering the forces and moments that cause the
motion.
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3.1 Representation of Fluid Flow
Two approaches in fluid dynamics: system approach and 
control volume approach

(1) System (material volume)
approach: follows the fluid as it
moves and deforms; no mass crosses
the boundary (Lagrangian description)

(2) Control volume approach:
considers the changes in a certain
fixed volume; mass can cross the
boundary (Eulerian description)

Reynolds Transport Theorem (RTT)
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System: a collection of matter of fixed identity (always 

the same fluid particles), which may move, flow, and 

interact with its surroundings.

Material volume: a volume that
contains the same fluid as it moves and
deforms following the motion of the fluid.

Material surface: an enclosing surface of
a material volume; no fluid particles can
cross it.

3.1 Representation of Fluid Flow
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3.2  Reynolds Transport Theorem 

Control volume: a volume in space (a geometric entity, 

independent of mass) through which fluid may flow.

Control volume: a volume of fluid
in a flow field, usually fixed in space,
to be occupied by different fluid
particles at different times.

Control surface: imaginary or
physical enclosing surface of a control
volume, fluid particles can cross it.
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3.2  Reynolds Transport Theorem 
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3.2  Reynolds Transport Theorem 
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Reynolds Transport Theorem

rate of change of the local rate of change of the
property G within property within the fixed
the material volume control volume that happens

to coincide with the material
volum
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Any quantity G satisfies the relationship between
material volume and control volume:

3.2  Reynolds Transport Theorem 
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For a material volume, after a time period dt:

The change of material 
volume in dt is:

Thus:

RTT can be derived from the equation above:

omit 2nd order 
quantities

3.2  Reynolds Transport Theorem 
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3.2  Reynolds Transport Theorem 
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Continuity Equation: conservation of  mass (mass of  a 
system is neither be created nor destroyed) 

In RTT equation, if  the quantity is mass, i.e.,           , then:

 L.H.S.      mass in 0     MV

d ddV MV
dt dt

 
by Gauss theorem is stationary

R.H.S.      
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3.3 Continuity Equation 

(From the definition of MV: it always contains the same fluids)


