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Review

Two ways of describing a fluid flow: 

Lagrangian description, Eulerian description 
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Differences: 

Particle positions x, y, z in Lagrangian description; 

while spatial point (x, y, z) in Eulerian description. 

Spatial point (x, y, z) in Eulerian description is 

independent variable of t, however, particle positions x, 

y, z in Lagrangian description are functions of t.

Review: Differences between Lagrangian
and Eulerian Descriptions
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Review

Total (material, substantial) derivative:

           




t

D
D t

V 

Effects of the unsteadiness 
of the flow

Effects of the fluid particle moving 
(advecting or convecting) to a new
location in the flow, where the 
velocity field is different
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2.2 Pathlines and Streamlines

Various ways to visualize flow fields —

 Pathlines

 Streamlines
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2.2.1 Pathlines

Definition: a pathline is the trajectory of  a fluid 
particle of  fixed identity over a period of  time.

( , , , )
( , , , )
( , , , )

x x a b c t
y y a b c t
z z a b c t


 
 

As pathlines are the actual paths
traveled by individual fluid particles
over some time period. In
Lagrangian description, a pathline is
the same as the fluid particle’s
position vector:
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2.2.1 Pathlines
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2.2.1 Pathlines
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2.2.1 Pathlines
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Normally, the velocity field is given by Eulerian description  as:

A fluid particle moves from one spatial position (x, y, z) to another 
(x+udt, y+vdt, z+wdt) over a period of time dt, i.e., it moves a 
distance of dr. The equation of the pathline for the fluid particle is:

d d tr V or written as

Since the pathline is defined by integration of the
relationship between velocity and displacement,
to integrate (u, v, w) with respect to t, use initial
condition (x0, y0, z0, t0) to determine the integral
constants, then eliminate t.

( , ) ( , , , )t x y z t V V r V

d
d
d
d
d
d

x u
t
y v
t
z w
t

 

 

 

dx dy dz dt
u v w
  

2.2.1 Pathlines

x, y, z are functions of t
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2.2.2 Streamlines

Definition: a streamline is a curve that is 

everywhere tangent to the velocity vector 

at a given instant. 

At an instant of time, there is at every point a

velocity vector with a definite direction. The

instantaneous curves that are everywhere tangent

to the direction field are called the streamlines of

flow.
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2.2.2 Streamlines

By definition, the local velocity vector V and the element of arc 

length along a streamline dr are locally parallel, thus the equation 

for a streamline is:

0d V r
dx dy dz
u v w
 

Two-dimensional flows

Also by simple geometric arguments using 
similar triangles, the slope of the 
streamline:

dy v
dx u


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0d V r

2.2.2 Streamlines

Pathlines and streamlines are identical in steady flows 



Shanghai Jiao Tong University

Characteristics of streamlines:

 Instantaneous quantities
 Tangential direction of the streamlines are identical to the velocity

vectors. Streamline cluster density reflects the magnitude of velocity:
streamlines close together ⇒ high velocity, streamline far apart ⇒
low velocity

 The streamlines never intersect each other except at a point of
zero velocity, because at any point, there can be only one direction
of the velocity

 The streamlines never interrupt in the fluid
 Since the velocity vector in the flow field is everywhere tangent to

the streamline, the fluid cannot cross the streamlines and the
streamlines can be regarded as fixed walls

2.2.2 Streamlines
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Streamtube

Definition:  a set of  streamlines that intersect a closed 
loop in space. 

2.2.2 Streamlines

Streamtubes are instantaneous quantities
like streamlines, defined at a particular
instant in time according to the velocity
field at that instant. When the flow is
steady, the shape of the streamtube does
not change with t , like a real pipe. No fluid
crosses a stream tube’s surface because
the fluid velocity vector is everywhere
tangent to it.
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Streamtube

Let's take two cross-sections of a streamtube,
with cross-sectional areas A1 and A2. The
velocities perpendicular to the cross-sections
are V1 and V2, respectively. The rate at which
mass is entering the streamtube is ρ1A1V1; the
rate at which it is leaving is ρ2A2V2. If the flow is
steady, the mass is conserved and then ρ1A1V1=

ρ2A2V2, and if flow is incompressible, then
A1V1= A2V2.

2.2.2 Streamlines

In an incompressible flow field, a
streamtube (a) decreases in
diameter as the flow accelerates or
converges and (b) increases in
diameter as the flow decelerates or
diverges.

The fluid speed increases when the cross-

sectional area of the streamtube decreases.

A1

A2
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Flux
Definition: the flow rate of  a property (volume, mass, weight) 
per unit area of  a spatial curved surface per unit of  time —
volumetric flux, mass flux, weight flux.

Volumetric flux: the
rate of volume flow
across a unit area

Mass flux: the rate of
mass flow per unit area

Weight flux: the rate of
weight flow per unit area

For a closed surface S, take the unit 
outer normal as positive, then the flux is:

Gauss’ theorem

1 nn
S S

Q v ds ds   V

2 n
S

Q v d s 

3 n
S

Q gv ds 

     


ddS
S

VnV 

2.2.2 Streamlines
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A two-dimensional velocity field is given as: ,  
1

 

xu v y

t
(1) Determine the pathline equation for   1 , 0

1
y t

x
 



(2) Determine the streamline equation for    0 0
,

t t
x a y b

 
 

The pathline equation is: 
d d,
d 1 d

 


x x y y
t t t

Integrating to give:   1 2ln ln 1 ln , ln lnx t C y t C    

i.e.,  1 21 ,     tx C t y C e

From                :  1 , 0
1

y t
x

 


1 21, 1C C 

Thus, the pathline equation is:

Solution: (1)

Application1: Pathlines and Streamlines

1 
 

t

x t
y e
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(2) The streamline equation is:
1 1d dt x y

x y




Integrating, yield:  1 ln ln lnt x y C  

i.e., 1 tx Cy 

From                                :   0 0
,

t t
x a y b

 
 

aC
b



Thus, the streamline equation at t=0 and (a, b) is:
by x
a



Application1: Pathlines and Streamlines
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1

2

3

1

1

t

t

x C e t

y C e t
z C

  

  


Assume the pathline equation of a fluid particle is:

where C1, C2, C3 are constant

(1) The pathline equation of the fluid particle at x=a, 
y=b, z=c, and t=0;

(2) The velocity of any fluid particle;

(3) The expression of velocity field by Eularian
description;

(4) Are the acceleration field by Eularian description 
and the acceleration field by converting Lagrangian
description to Eularian description the same?

Determine: 

Application2
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Solution:  (1) The pathline equation 

Substituting 0,t ,x a ,y b z c

1 2 31, 1,a C b C c C    

1 2 31, 1,C a C b C c    

The pathline equation of the fluid particle at  is:( , , )a b c

( 1) 1
( 1) 1

t

t

x a e t
y b e t
z c

   

   


into the pathline equation, yields:

Thus,

(1)

Application2



Shanghai Jiao Tong University

(2) The velocity of any fluid particle:

1

2

1 ( 1) 1

1 ( 1) 1

0

t t

t t

xu C e a e
t
yv C e b e
t
zw
t


     



     



 


(2)

Application2



Shanghai Jiao Tong University

1 ( 1) 1

1 ( 1) 1

t

t

a x t
e

b y t
e

c z

   

   



(3) Expressing the velocity field by Eularian description 

a, b, c are solved from Equation (1):

(3)

Substituting into Equation (2), yields:

( 1) 1

( 1) 1 2

0

t

t

xu a e x t
t
yv b e y t
t
zw
t


     



      



 


(4)

Application2
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(4) Determining the acceleration field by Eularian description 

1

1

0

x

y

z

u u u ua u v w x t
t x y z
v v v va u v w y t
t x y z
w w w wa u v w
t x y z

   
      
   
   

      
   
   

    
   

From Equation (1), the acceleration of the particle at (a, b, c) is:
2

2

2

2

2

2

( 1)

( 1)

0

t
x

t
y

z

xa a e
t
ya b e

t
za

t


  



  



 


(5)

Application2
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Substituting Equation (3) to (5), yields:

1
1

0

x

y

z

a x t
a y t

a

  
  



By comparison, the two results are the same
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2.3  Deformation and Rotation of 
Fluid Elements

In theoretical mechanics, the motion of a rigid body 

can be split into the translational motion and the 

rotational motion.

r ωVV  M

MV

r
ω

Velocity of a reference point M

Radius vector between a moving point and 
the reference point

Angular velocity
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In fluid mechanics, to study the motion of the fluid, take a fluid
element from the flow field. A point in this fluid element is M(x, y,
z), an adjacent point is M' (x+dx, y+dy, z+dz). Let the velocity at M
is V, then the velocity at M' is:

'

(1 ) ( 3 )( 2 )

( 5 )( 4 )

( ) ( ) ( )

1 1[ ( ) ( )
2 2

1 1( ) ( ) ] ( ) ( )
2 2

M M M
M M x y z

x y z

u d x d y d z

d x d y d z

d y

u
y

w
x

w
x

u
y

u
y

u
z

u
z

u
z

v

d z

x

x

u

u

v

x
u

x

    
       

  

    









      

     

   



    





 












 








V V VV V

i j k

i j k

2.3  Deformation and Rotation of 
Fluid Elements
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(1)

1( 2 ) ( )
2

1(3 ) ( )
2
1( 4 ) ( )
2
1(5 ) ( )
2















 

  
 

 
 

 
 

 
 
 

 
 

x x

z

y

x y

x z

u
x

v u
x y

u w
z x
u v
y x
u w
z x

In the equation:

2.3  Deformation and Rotation of 
Fluid Elements

 yy  zz

x

 zy
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(1) Physical meaning of , ,xx yy zz
u v w
x y z

    
  
  

Physical meaning of each item in the equation  

2.3  Deformation and Rotation of 
Fluid Elements
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Consider the linear strain in x-direction only

Change of length per unit length:

/x
u ud x d t d x d t
x x

  
 

 

x
x x

u
d t x
 

 


Similarly: ,y y z z
v w
y z

  
 

 

It indicates the rate of increase or decrease in length 
of a fluid element in x-direction.

are called linear strain rate,  ,    x x y y z z

2.3  Deformation and Rotation of 
Fluid Elements

Rate of change of length per unit
length:
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xx yy zz
u v w
x y z

     
       

  
VApparently:

is the divergence of velocity,
denoting the rate of change of volume
of a fluid element per unit volume
(volumetric strain/dilatation rate).

V

Change of volume in x-direction:

 x
u uV u x y z t u y z t x y z t
x x

                               

Change of volume in x-direction per unit volume per unit time:

  as ,  0x

u x y z tV ux x t
V t x y z t x

     
    


      

    

2.3  Deformation and Rotation of 
Fluid Elements
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Similarly, in y and z directions:

,          as ,  ,  0y z
V Vv w y z t

V t y V t z
    

 
 

  
   

Thus, the total change of volume per unit volume per unit time is:

= V     as ,  ,  ,  0V u v w x y z t
V t x y z
    


  

     
   

The divergence of velocity can be used to
express the volumetric strain/dilatation rate

V

0  V

2.3  Deformation and Rotation of 
Fluid Elements

Incompressible flow 
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0

0

0

 

  

  

V

V

V

2.3  Deformation and Rotation of 
Fluid Elements

, indicates the fluid flows out of the element 
and is called a source flow

, indicates the fluid flows into the element 
and is called a sink flow

, indicates the velocity field of the 
incompressible fluid is without the source 
flow.
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,  ,    xy xz zy(2) Physical meaning of 

,  ,    x y z(3) Physical meaning of 

2.3  Deformation and Rotation of 
Fluid Elements
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  /v vtg x t x t
x x

      
  

 

For a fluid element (in the x–y plane), the change of line OA in a 
short time interval δt is:

2.3  Deformation and Rotation of 
Fluid Elements

  /      
  

 
u utg y t y t
y y

Similarly, 
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The angular velocity of line OA is:

  as  ,  0d v x t
dt x
  

  




Similarly, the angular velocity of line OB is:

  as  ,  0d u y t
dt y
  

  




x

y

O





2.3  Deformation and Rotation of 
Fluid Elements
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1 1( ) ( )
2 2x y

v u
x y

   
    

 


1 ( )
2y z

w v
y z

  
 

 

1 ( )
2z x

u w
z x

  
 

 

x

y

O

 1
2
  

 1
2
  

It denotes the rate of angular

deformation of a right angle in the

fluid element, it is called shear strain

rate. When ,the angle decreases;

In contrast , the angle increases.

0xy 

Similarly:

2.3  Deformation and Rotation of 
Fluid Elements
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x

y

O

 1
2
  

 1
2
  

 1 1
2 2z

v u
x y

  
  

      


It denotes the rate of rotation，

angular velocity of the fluid element.

When , the fluid element

rotates in counterclockwise

direction; in contrast, it rotates in

clockwise direction.

0z 

1 1( ), ( )
2 2x y

w v u w
y z z x

    
   

   

2.3  Deformation and Rotation of 
Fluid Elements

Similarly:
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 Dilatation 

+           (rigid body motion)

General motion =           +
              (change in volume)

Angular

Tran

 def

slation 

ormation

Rotation (2)

          +
  (change in shap

(1

 (4 ))

)

)

e

(3

 


 










'
(1) (3)(2) (4)

[ ]

( ) ( )

x xy xzM z y xdy dz dx dy dzu          

   

V i

j k

2.3  Deformation and Rotation of 
Fluid Elements
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Helmholtz velocity decomposing 
theorem:

An fluid element may undergo four
fundamental types of motion or deformation: 
(a) translation, (b) rotation, (c) linear strain, 
and (d) shear strain

2.3  Deformation and Rotation of 
Fluid Elements
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1shear rate tensor  =
2

ji
ij

j i

uue
x x

 
     

E

     vorticity    (curl of velocity) 

                       

                       

22 2yx z

i j k

x y z
u v w

w v u w v ui j k
y z z x x y

 

 

  

  

                           

Ω V
 

 

 

ζ = 

2
  

1rate of rotation  (vorticity)
2x y zi j k     

 
ω ζ

2.3  Deformation and Rotation of 
Fluid Elements


