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4.1 Indroduction to Hydrostatics
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4.1 Indroduction to Hydrostatics

Hydrostatics is the study of pressures throughout
a fluid at rest and the pressure forces on finite

surfaces.

As the fluid is at rest, there are no shear stresses
In it. Hence the pressure at a point on a plane
surface always acts normal to the surface, and all
forces are independent of viscosity.

The pressure variation is due only to the weight of
the fluid.




“‘"ﬁf‘“‘u% 4.2 Indroduction to Pressure

Pressure always acts inward normal
to any surface.

Pressure

Pressure is a normal stress, and hence has
dimensions of force per unit area, or [ML-1T-2].
In the Metric system of units, pressure is

expressed as "pascals" (Pa) or N/m?,

Standard atmospheric pressure is 101.3 kPa.

Pressure is formally defined to be

. AF,
p = lim
AA—>0 AA

where

AF_ IS the normal compressive force acting on an infinitesimal area AA .
n



4.3 Pressure at a Point

By considering the equilibrium of a small triangular wedge
of fluid extracted from a static fluid body, one can show
that for any wedge angle 6, the pressures on the three
faces of the wedge are equal in magnitude:

P, =P, =P, independent of &

This result is known as ; v
Pascal's law, which ’
states that the pressure

at a point in a fluid at

rest, or in motion, is »&&=—
independent of direction *
as long as there are no
shear stresses present. .
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4.3 Pressure at a Point

Pressure at a point has the same magnitude in all
directions, and is called isotropic.

Free surtace

A p =0 gage

h

Air
Liquid

P
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By rFALE 4.4 Pressure Variation with Depth

Consider a small vertical cylinder of fluid in equilibrium, where
positive 7 is pointing vertically upward. Suppose the origin Z=0
is set at the free surface of the fluid. Then the pressure variation
at a depth z = -/ below the free surface is governed by

(p+Ap)A+W = pA

:

= ApA+ pgAAz =0 -
—  Ap=-pgAz = ’
h
:> d_p: _pg p+Ap
dZ v AZI ' EC;ZZS sectional
dp
or 47 =—y (as Az — 0) b
V4

Therefore, the hydrostatic pressure increases linearly with depth at the
rate of the specific weight y = pg of the fluid.




}"“M%@ 4.4 Pressure Variation with Depth

Example: Find the relationship between pressure and
altitude in the atmosphere near the Earth's surface. For
simplicity, neglect the vertical temperature gradient. Let
temperature T = 288 K (15°C) and pressure p,= 1 atm at the
surface. The average molecular weight of air is M, = 28.8
g/mol. The Universal gas constant is R; = 8.3 J/molX K.
Assume that air is a perfect gas, its density varies with

: M
pressure accordingto o =P - $ .

9

Solution: Let the altitude above the Earth's surface be
denoted by z, then
dp _

d7 -pP9
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ng University

: M,
Since p = p R T
M M R M
(;—p:_p gg — d_p:_ ggdz — J'd_p:_jgggdz
Z RgT P R@j 5, P 7 RgT
M M
— In—_ ggZ:> p=p,exp|— 09 Z
P, RgT RgT

Neglecting temperature variation, the exponential decay
rate for pressure with height is,
M,9 28.8x107°x9.81
RT  8.3x288

=1.18x10™* per meter of rise

Say, at 2000 ft or 610 m above the Earth's surface, the pressure is
p=(1 atm)exp| —1.18x10* x 610 | = 0.93 atm

That is, for such a high elevation, the pressure drops only by 7%.
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By rFALE 4.4 Pressure Variation with Depth

Consider a small vertical cylinder of fluid in equilibrium, where
positive 7 is pointing vertically upward. Suppose the origin Z=0
is set at the free surface of the fluid. Then the pressure variation
at a depth z = -/ below the free surface is governed by

(p+Ap)A+W = pA

:

= ApA+ pgAAz =0 -
—  Ap=-pgAz = ’
h
:> d_p: _pg p+Ap
dZ v AZI ' EC;Z;S sectional
dp
or 47 =—y (as Az — 0) b
V4

Therefore, the hydrostatic pressure increases linearly with depth at the
rate of the specific weight y = pg of the fluid.




TERLAY 4.4 Pressure Variation with Depth

Homogeneous fluid: p is constant.
By simply integrating the above equation:
jdp:—jpgdz = p=—pgz+C

where C'is an integration constant. When z = 0 (on the free
surface), p =C = p, (the atmospheric pressure). Hence,

P=—p00l+ pO P, =P,
O
The equation derived above shows that when I
the density is constant, the pressure in a |
liquid at rest increases linearly with depth L@ PR R
from the free surface.
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i

For a fluid with constant density,

pbelow = pabove T p g ‘AZ‘

As a diver goes down, the pressure on his ears
increases. So, the pressure "below" is greater than the
pressure "above."
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4.5 Hydrostatic Pressure Difference Between Two Points

There are several "rules” or comments which directly
result from the above equation:

Air

1) If you can draw a continuous line
through the same fluid from point 1 to
point 2, then p, =p, it 7, = z,.

1 2 3

For example, consider the oddly shaped container. By this
rule, p, = p, and p, = p. since these points are at the same
elevation in the same fluid. However, p, does not equal p, even
though they are at the same elevation, because one cannot
draw a line connecting these points through the same fluid. In
fact, p, is less than p, since mercury is denser than water.




4.5 Hydrostatic Pressure Difference Between Two Points

2) Any free surface open to the atmosphere has atmospheric
pressure, p,.

1

(This rule holds not only for hydrostatics,
but for any free surface exposed to the
atmosphere, whether the surface is
moving, stationary, flat, or mildly curved.)

2

Consider the hydrostatics example of a container of water:
The little upside-down triangle indicates a free surface, and
means that the pressure there is atmospheric pressure, p,.
In other words, in this example, p, = p,. To find the

pressure at point 2, our hydrostatics equation is used: p, =

potpgh (absolute pressure) or p, = pgh (gauge pressure).
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:

3) The shape of a container does not matter in hydrostatics.

Jug Graduated Cylinder Vase

(Except of course for very small
diameter tubes, where surface
tension becomes important.)
Consider the three containers in the
figure below:

At first glance, it may seem that the pressure at point 3
would be greater than that at point 1 or 2, since the
weight of the water is more "concentrated” on the small
area at the bottom, but in reality, all three pressures are
identical. Use of our hydrostatics equation confirms this
conclusion, i.e.

pbelow _ pabove + 09 ‘AZ‘ — pl p2 p3 p() + 00 AZ
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4) Pressure in layered fluid.

For example, consider the container in the figure
below, which is partially filled with mercury, and
partially with water:
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4.5 Hydrostatic Pressure Difference Between Two Points

In this case, our hydrostatics equation must be used
twice, once in each of the liquids

Pociow = Pabove 79 ‘AZ‘
=P =Pt P98z and P, =Pt Oy 9AZ,
Combining,
P, = Po + Puater 921 + Prvereury 9AZ5

Shown on the right side of the above figure is the distribution
of pressure with depth across the two layers of fluids, where the
atmospheric pressure is taken to be zero P, =0 .

The pressure is continuous at the interface between water and
mercury. Therefore, P,, which is the pressure at the bottom
of the water column, is the starting pressure at the top of the

mercury column.



The fact that the pressure
applied to a confined fluid
increases the pressure F =PA,
throughout the fluid by the |

same amount has important
applications, such as in the

hydraulic lifting of heavy
objects: \
O/
ID1 = P2 — Fl = F2 — Fl = A]
ALA KA




- 4.6 Pressure Measurement and Manometers
1) Piezometer tube (2] Ei1HE)

The simplest manometer is a tube, open Open

at the top, which is attached to a vessel 7
or a pipe containing liquid at a pressure
(higher than atmospheric) to be measured.
This simple device is known as a
piezometer tube. As the tube is open to
the atmosphere the pressure measured is [ “4 s/ (1)
relative to atmospheric so is gauge

pressure. .
P = 7/1h1

This method can only be used for liquids (i.e. not for gases)
and only when the liquid height Is convenient to measure. It
must not be too small or too large and pressure changes

must be detectable.
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~ 4.6 Pressure Measurement and Manometers

e

2) U-tube manometer (U Eit)

Open

This device consists of a glass
tube bent into the shape of a "U", " 3
and is used to measure some
unknown pressure.

. L] 4 .
For example, consider a U-tube @ 3=

manometer that is used to (aze
measure pressure p, in some kind L
of tank or machine.

Consider the left side and the right side of the manometer
separately:

p, +y,h, = p,+7h
7,h,

P,
P;
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Since points labeled (2) and (3) in the figure are at the
same elevation in the same fluid, they are at equivalent
pressures, and the two equations above can be equated to
give

Open

P A :7/2h2_7/1h1
N I
Finally, note that in many cases “+ T[]
(such as with air pressure being i _’1 o ot o
measured by a mercury manometer), n
the density of manometer fluid 2 is s
much greater than that of fluid 1. In _ v

such cases, the last term on the
right is sometimes neglected.




