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A New Numerical Method for Surface Hydrodynamics

BRUCE J. WEST,! KEITH A. BRUECKNER,? AND RALPH S. JANDA

Division of Applied Nonlinear Problems, La Jolla Institute, La Jolla, California

D. MICHAEL MILDER AND ROBERT L. MILTON

Areté Associates, Sherman Oaks, California

We present a new numerical method for studying the evolution of free and bound waves on the
nonlinear ocean surface. The technique, based on a representation due to Watson and West (1975),
uses a slope expansion of the velocity potential at the free surface and not an expansion about a
reference surface. The numerical scheme is applied to a number of wave and wave train
configurations including longwave-shortwave interactions and the three—dimensional instability of
waves with finite slope. The results are consistent with those obtained in other studies. One
strength of the technique is that it can be applied to a variety of wave train and spectral

configurations without modifying the code.

1. INTRODUCTION

The wind generation of waves on the ocean surface and
their subsequent evolution has been described for over 2
decades in terms of a weakly interacting field of nonlinear
waves whose equations of motion are determined by a
Hamiltonian [Phillips, 1966; Zakharov, 1968] for an
incompressible, inviscid, irrotational liquid. To describe
the processes of wave generation, evolution, and the subse-
quent development of wave instabilities, it has been found
convenient to express the observables at the ocean surface
in series expansions of the eigenfunctions of the linearized
system. The expansion coefficients in such series are con-
stant in the linearized systems but are variable in the non-
linear system. Because the linear water wave field is har-
monic, the eigenfunctions are simple sines and cosines, and
the series expansion are just Fourier series. The expansion
coefficients are interpreted as the amplitudes of indepen-
dent waves in a linear wave field. Correspondingly, the
nonlinear surface is referred to as a nonlinear wave field,
and the nonlinearities are interpreted as couplings or
scatterings of the once linear waves [Hasselmann, 1962,
1963a,b]. The Hamiltonian for this system is a series in
which the nonlinear terms appear as products of the mode
amplitudes [e.g., West, 1981]. These nonlinear interactions
induce variations in both the amplitudes and the phases of
the linear waves in the equations of motion. For a weakly
nonlinear system such as gravity waves away from the
region of wave breaking, this induced variation is much
slower than the harmonic variation of the linearized system
[Phillips, 1960; Benney, 1962; Longuet-Higgins, 1962].
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The gravity wave field on the sea surface is a conserva-
tive Hamiltonian system so that Hamilton’s equations of
motion provide a deterministic description of its evolution
[Hasselmann, 1968; Broer, 1974; Watson and West, 1975;
Miles, 1977; Milder, 1977; West, 1981]. If we assume that
this field is well represented by N degrees of freedom,
where N may be large but finite, the system can be
represented by N coupled, deterministic, nonlinear rate
equations for the mode amplitudes. Moser [1973] gives a
general mathematical discussion of the separation of the
interactions in such Hamiltonian systems into resonant and
nonresonant groups. The nonresonant interactions provide
for a stable evolution in the phase space of the system,
whereas the resonant interactions lead to instabilities. In a
qualitative way, a resonance is a matching between both
space and time scales of the wave of interest and the scale
of the nonlinear interactions among the other
waves. The existence of such resonance in water wave
fields was explicitly pointed out by Phillips [1960]. He
showed that just as for resonance in a linear system, the
resonant nonlinear interactions among gravity waves pro-
duces an initial secular growth of new waves. Benney
[1962] extended these arguments to show how the non-
linear interactions also lead to an eventual quenching of
this apparent instability. Chirkov [1979], in his discussion
of the general properties of nonlinear systems, points out
that the oscillations induced by such nonlinear resonances
are always bounded, as distinct from linear resonances
which are unbounded in general. The dependence of the
frequency on the wave amplitude, i.e., the nonlinear disper-
sion relation, is the cause of the nonlinear resonant motion
being bounded. The weak nonlinearities in the system
therefore act to stabilize the system motion and inhibit
explosive instabilities.

The concept of resonant interaction has formed the basis
for many analytic-numeric calculations of the properties of
wind—generated water waves [Hasselmann, 1962, 1963a,b;
Zakharov, 1968; Yuen and Lake, 1982; Peregrine, 1983;
Bryant, 1984]. The evolution of capillary and
gravity—capillary waves has been described by mode rate
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equations with quadratic nonlinearities, i.e., three-wave
interactions, whereas gravity waves are described by mode
rate equations with cubic nonlinearities, i.e., four-wave
interactions. The nonresonant interactions had been

" . thought to be unimportant in describing the evolution of the

wave field; however, Watson and West [1975] using pertur-
bation theory and West [1981] using a canonical transfor-
mation of variables, demonstrated that the nonresonant
terms contribute substantially to the strength of the
resonant interactions among the surface waves and are
therefore not negligible. In this paper we include the
effects of both linear and nonlinear interactions.

In this age of the computer, an efficient computational
technique can be at least as useful in probing the physical
content of a system of dynamic equation as the analysis of
a number of exactly solvable special cases. In this paper
we present such a numerical technique for solving the non-
linear partial differential equations describing the evolution
of free waves on the ocean surface. Numerical codes using
this technique are then applied to a number of wave and
wave train configurations that are fairly well understood to
establish the integrity of the technique.

The technique is the culmination of work by the various
authors spanning several years. As far as we know the first
proposal for a method of this kind applied to the nonlinear
ocean surface appeared in an unpublished memorandum of
1974 by one of us (BJW) and his colleagues J. Alex
Thomson and Kenneth Watson. The method was indepen-
dently proposed and implemented in one surface dimension
by another of us (DMM) in 1977. The computations possi-
ble at the time were limited by computer size and speed to
fairly modest scales and idealized one—dimensional prob-
lems, but they were able to demonstrate strikingly realistic
nonlinear behavior. Some of the calculations to be shown
have been done previously using special-purpose codes,
but the approach presented here is among the first that has
been able to do them all without modification of the code.

Herein we do not model the ocean surface as a weakly
interacting wave field in the sense developed by Zakharov
[1968]; i.e., we do not truncate the mode rate equations at
third order in the mode amplitudes nor do we restrict the
interactions to those at or near resonance. Rather, the for-
mal expansion about the free surface of Bernoulli’s equa-
tion and the kinetic boundary condition are retained to arbi-
trary order using a formalism developed by Watson and
West [1975]. The numerical integration of these latter
equations is done by taking products of field quantities in
configuration space, e.g., the surface displacement, velocity
potential, and gradients of these terms; fast Fourier
Transforming (FFT) the configuration equations and time
incrementing the transformed equations to obtain the com-
ponents of the appropriate field variables, then transform-
ing (FFT) back to configuration space to again evaluate the
nonlinear products and start the process again. This numer-
ical procedure described in section 2 does not distinguish
between resonant and nonresonant interactions, so that it
includes effects explicitly neglected, or approximated by
most calculations involving the use of nonlinear mode rate
equations. In particular, herein we do not make a multiple
time scale expansion to construct the mode rate equations
[Yuen and Lake, 1982].

In section 3 we present a number of calculations using
the new technique. Some of these, such as soliton propaga-
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tion and scattering, reproduce well-known results. How-
ever, certain stability properties of envelope solitons are
determined that could not be observed previously because
of computational limitations. We also examine the per-

sistence of modulational patterns on the ocean surface -

such as Kelvin wakes as well as three—dimensional wave
instabilities.

Of most significance to physical oceanography has been
the use of these nonlinear equations in constructing trans-
port expressions for the action or energy density in a
wind-generated gravity wave field [Hasselmann, 1962,
1963a,b, 1968; Longuet-Higgins and Cokelet, 1976]. By
assuming the statistics of the surface waves to be Gaussian,
the resonant waves have been shown to lead to an integro
differential transport equation that is cubic in the action
spectral density [N (k,t)] [Hasselmann, 1962, 1963a,b;
West, 1981]. It is well known that the equilibrium spectrum
determined by this equation is nonphysical; i.e.,
N (k,o0) = (e+ P k+yw)™ where o, B and y are con-
stants, k is the wave vector, and , is the wave frequency,
so a more exact treatment of the evolution of the action
density is desirable. In particular, one that leads to an
equilibrium spectrum that is physically realizable.

Hasselmann [1962, 1963a,b] assumed a priori that the
nonlinear wave field on the ocean surface is spatially
homogeneous. In more usual situations the transport equa-
tions will contain both homogeneous and nonhomogeneous
terms. The former dominate the description of the
long—term, large-scale oceanographic forecasting of the
wave spectrum even though these terms are weaker and
slower than the nonhomogeneous terms [Watson and West,
1975]. The latter terms dominate the smaller—scale
phenomena that would be of interest in the interpretation of
returns from remote sensors such as radar. The description
of the modulational characteristics of the ocean surface
would be an essential part of such an interpretation, and the
nonhomogeneous aspect of the transport equation must be
properly taken into account [Watson, West, and Cohen,
1976; Yuen and Lake, 1982].

The homogeneous transport equation of Hasselmann has
been evaluated only in a relatively few situations because
of the excessive computational time required to evaluate
the five—dimensional integral in the nonlinear energy
transfer term. Various approximations of the integral
expression based on narrow—peaked spectrum approxima-
tions have been made [Longuet-Higgins, 1976; Fox, 1976;
Dungey and Hui, 1979; Herterich and Hasselmann, 1980].
Hasselmann and Hasselmann [1985] have pointed out that
although these approximations faithfully yield some impor-
tant features of the full integral expression, ‘‘they are not
sufficiently accurate to serve as an acceptable parameter-
ization in wave models.”” These latter authors discuss a
computational technique which exploits the explicit sym-
metries of the integrand of the homogeneous transport
equation and introduce a stretched variable to enhance
resolution in important regions of wave vector space
[Hasselmann and Hasselmann, 1981].

In section 3.5 some aspects of energy transfer have been
considered for the interaction of waves of very different
wavelength and height, showing the rapid alteration of the
shorter wavelength spectrum. This rapid energy transfer
also shows that a perturbation treatment has limited valid-
ity. This conclusion is relevant to the more general ques-

—
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tion of convergence of the Watson—-West and Hasselmann
methods when waves of very different amplitude and
wavelength are present.

Section 3.6 illustrates the ability of this method to repro-
duce sharp—crested waves, both steady and random. The
example of parasmc capillaries arising at the crest of a
gravity-wave train is another illustration of the simulta-
neous convergence of the free surface slope expansion at
widely differing height and wavelength scales.

2. WATSON-WEST METHODOLOGY

2.1.
The motion of the free surface of an incompressible, invis-
cid liquid 4 (x, ¢) is determined by the Bernoulli equation
a9
+=v+gh =0 1
3¢ 2 vVi+g 1)

with the fluid velocity v(x,¢) given by the gradient of the
velocity potential ¢ (x, ¢),

Basic Equations

v=Vo 2)
and the vertical motion of the free surface by
GreSirvvh=St=v 0
In the interior of the incompressible fluid,
Viv=10
so that
Vi¢ =0 “)

These equations can be easily converted to equations at the
free surface, where

0 (x,1) = ¢ [} h (x,1),¢] Q)
with the result (dropping the subscript s on ¢;)
9% _ _ ., 1 2 Ly 2
o =g Vel + w1+ (vh?] "
%’t‘— = Vo Vh+W[1+(VhY]
These equations form a canonical pair,
ot &k ot &
derivable from a single Hamiltonian function
H(h, ¢)——j[ +gh]dx ®)

in which oh/dt is understood to stand for the linear func-
tional of ¢ in (6) as developed below [Broer (1974); Miles
(1977)]. The nonlinear terms in both field equations arise
from the nonlinear dependence of the kinetic energy terms
on surface slope. The approximations to be used are based
on truncations of the Hamiltonian at various nonlinear or-
ders. The essence of this method is that the dynamics or
forces are approximated, but the solutions are uncon-
strained. For example the advective term V¢ +Vh in the
height equation (6) originates in the first nonlinear term of
the Hamiltonian, but it can, along with its counterpart
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(V$)%/2 in the potential equation, generate sharp-crested
waves. The solution of (6) depends on obtaining an equa-
tion for W in terms of & and ¢.

The procedure proposed by Watson and West [1975]
starts from the formal relationship

A
d(x,h) = Z 2l 347 D (x) ®
with
D) = o(x,2) z =0

and & measured from a reference height z =0, but this
reference height is arbitrary; we could choose it as Ay In
(9) the derivative of ¢ can be expressed in terms of the for-
mal operator

9
dz

which multiplies any one- or two—dimensional Fourier
coefficient of ¢ by the magnitude of k. From ¢ (x,z), the
vertical velocity is given by

¢ (x,2)

’I.

10)

W = at z=nh

a
=X

n

Kn+1

D (x) (11)
Given ¢ (x, h), the reference function @ (x) can be obtained
by formally inverting (9), and finally W can be obtained
from the infinite series (11).

The field equations (6) must be truncated at consistent
nonlinear order if they are to represent a conservative
Hamiltonian system. The order is counted as the power of
h or its gradient occurring in the terms associated with W;
at order n,

W1+ (Vh)] 5> W, + W, ,(Vh)?

(12)

1 e 21, Lows o Lo 2
> WL+ (VAY] = (WD), + S (W), (Vh)

with

WD, = 3 W Wain (13)

m=0

The solution of these equations can be obtained by for-
mal expansions of W and ¢ as

W= YW,
n=0

b= 3 0, (14)
n=0

with the terms in W and ¢ ordered according to their
dependence on . From the expansion in (9), we find

¢ = D,
0= hK(D0+(DI
0= %h21c2<1>0+h1c<1>l+<1>1

_ n (h )n—m (K)n—m
0= X (n —m)!

m=0

@, (15)
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giving the inversion

Dy = ¢
D, = ~h lccbl—%hzxzcbo
@y = —h KDy L A2k2D, — L B3P @,
2 3t
b = — D 16
n m2=1 m! n-m ( )
From (11), we then find
WO = K(DO
Wl = K(D1+hK2(D0
W, =xd,+h K<D1+%h21(3¢3
Wiy = K<D3+h1c2<b2+%h21c3<b1+~31—' Kt o,
w,= 3 GLO g an

mo0 m!

Computationally, (16) is solved in sequence giving the ® of
each order in terms of the @ of lower order and #. From
the & the W, are then obtained in sequence from (17).

The series for W has been obtained by a formal expan-
sion about a reference surface z =0. The method therefore
is not obviously valid if the reference surface is shifted or if
very different wavelengths and wave heights are present.
The series can, however, easily be seen to be a slope
expansion so that the wave height does not directly enter.
If & is shifted by a constant &, only differences in # enter
the series. This is also apparent from the definitions of the
series in (9) and (11). If we shift 2 by a constant amount
h g, we can rewrite Eqs. (9) and (11) as

5 (h + hy)" "

!
" n!

=2

n

h+h) x*!
W=y ( 0

n

o, = @

h"x"
n!

[

et o (18)

n!

h* A
‘ k" eXho g
nt

=y (19)
n

This arrangement is possible since 4, commutes with k.
The same expression e**0® appears in Eqs. (18) and (19)
so that the choice of A, does not affect the relationship
between W and @, and only shifts the reference function
®. The calculation has been carried out with a spectrum
covering a wavelength ratio of 1024 (linear mesh of 4196
points) with all portions of the spectrum behaving stably,
and only slow energy transfer occurring. Further tests of
stability and convergence are described in section 2.4.

2.2. Computational Procedure

The principal computational problem is the evaluation of
(16) and (17). From the W, values so obtained, the time
evolution equations (6) are easily advanced.

WEST ET AL.: NUMERICAL METHOD FOR SURFACE HYDRODYNAMICS

The evaluation of the k operations in (16) and (17) is
most simply carried out by the FFT algorithm. The opera-
tions of even power in K can in principle be carried out by
using the identity

K2F(x) = —(VI+V)F ()

Jd?k (kK2 + KD F (ke

(20)

where F (k) is the Fourier transform of the arbitrary func-
tion F (x) and using a low—order finite difference formula
to evaluate the surface Laplacian. This procedure can,
however, affect the accuracy and convergence of the calcu-
lations, since the FFT evaluation of k% and the finite differ-
ence evaluation of — V? are significantly different, particu-
larly in high Fourier components. We have found that this
error can lead to instability for high Fourier components.
The method we have developed therefore evaluates all "
operations by the method of FFT.

The time evolution equations for ¢ and 4 contain non-
linear terms, the order depending on the approximation
used for W. If the calculation is formally of order n and
the Fourier transforms of # and ¢ contain maximum
Fourier components k,, =2mm /L, the nonlinear products
will contain Fourier components n k,,. These will produce
Fourier space aliasing if

nm >N/2 21)

N is the number of mesh points in the x or y direction,
assumed to be equal. The aliasing will give spurious com-
ponents to a distance (N —n m) below N /2. These will
enter into 4 and ¢ unless (N —n m) does not enter into the
band k <k,,, giving the nonaliasing condition

N-nmz=2m (22)
or
N
< 23
" n+l 23)

This limit severely restricts the Fourier space which can be
kept and therefore limits the effective resolution of the cal-
culations. The minimum wavelength in terms of the mesh
size A is

(24)

Thus for n =1, A ;,=2A. For a calculation of third order,
A min=4A. For the same spatial resolution, the mesh size in
a third-order calculation therefore must be % the mesh of a
first-order calculation. If the calculation is in the fifth
order, A, is 6A, requiring a mesh of % for the same
resolution as the first order.

2.3.

The surface displacement and velocity potential can be
expanded in the discrete Fourier series

Time Integration
h(x,t) = Ye' h (1) (25)
k

0, (%1) = e X (1) (26)
k



WEST ET AL.: NUMERICAL METHOD FOR SURFACE HYDRODYNAMICS

The coupled equations for the Fourier amplitudes Ay and ¢y
obtained from (6) are of the form

dh,
a[ = K¢k+Ak

(27)
a& = —ghy+B
YR 8Ny k

with A, and B, containing the nonlinear terms [e.g., West,
1981]. These equations are unstable for any time step if
they are advanced explicitly. They are also unstable if
advected by a combination of implicit and explicit differ-
ences if the Courant conditions

(28)

are violated, with Cx and Cy nax the maximum phase
speeds of a wave in the x and y direction, respectively.

The integration scheme must accommodate the time vari-
ation of the driving terms A,,B,, which can depend
markedly on the situation. For example in a progressive
narrow-band wave train the dominant driving forces would
constitute an overtone series of the dominant wave such
that for each spatial overtone &’ the A, B;. would be
narrow-band temporal processes centered about the over-
tone frequency @’ =ck’, ¢ being the fundamental phase
speed. Under such circumstances the time behavior can be
modeled with slowly varying parameters so that large time
steps and high efficiency can be attained. A scheme of this
kind has been developed and tested on the code in use at
the La Jolla Institute, and is described immediately below.
More chaotic situations in which waves of many
wavelengths propagate in many directions generate broad-
band temporal variation in the A,,B,, and one might
expect this particular method to experience more trouble.
One can always fall back on the less efficient small time
steps bounded by the Courant condition above. We have
found that very broadband, random surfaces can be
modeled with acceptable efficiency by a simple explicit
time step, and have installed their variant in the code run-
ning at Areté Associates. This method, though formally
unstable, has an exponential growth rate that becomes
numerically trivial for time steps more dense than a few per
cycle.

For the narrow-band case, assume that the time depen-
dence at an near ¢, can be approximated by

Cy o A <Ax ¢y . At<Ay

x

Ak(t) = Ak(tn)expi (‘OO(I _tn)

By(t) = By(t,)expi o (t—1,) @
Equations (27) and (29) then can be combined to give
& by . .
atz = _gth+Ak(tn)lm0exp[lwO(t_tn)]
+xBy(t)exp[i o (0 -1,)] (30)
This equation has a solution
hk — Clei(l)(l—ln)+ Cze_i (I)(l—ln)
+C3ei 0t in) 4 C g’ ML) @1

with the linear wave dispersion relation for deep—water
gravity waves

o = g| K| (32)
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Using (27) — (31) we find
hk(tn) = Cl + C2+ C3 + C4

i (D(Cl - C2) +i (DOC3 +l (Dl C4 = Kq)k(tn) +Ak(tn)

(02— @) C3 = i WA (t,)

(@~ 0})Cy = KB, (1,) 33)
From which we obtain C,,C,,C5,C4 as functions of
A (t,), By (1,), ), and ), for each value of k.

To utilize this method, we have adopted a two-step pro-

cedure. The time dependence of A and B is first obtained
from a backward difference, i.e.,

Altyy) = Ay(t)exp[i gt —1,) ]

By (t,) = By(tyexpli o, —1,)]

giving a first estimate of the complex constants @, and ;.
This allows Ay (f,.1) and ¢y (¢,.1) to be obtained, and from
these provisional values, A, (¢,,;) and B, (¢,,;) computed
directly from h, (t,,;) and ¢y (¢,,;). The provisional values
are used in a second pass to obtain improved values of o,
and w, i.e.,

il

(34)

Ap(tasy) = A () exp [ g (tyay —1,) ]
ék(tn+1) = Bk(tn)exp[i (‘01 (tn+1_tn)]

This method has been found to be stable and accurate for
time steps several times the Courant condition of (28).

(35)

2.4. Stability and Convergence

The computational procedure outlined in this section can be
applied to a variety of problems of general interest and of
more special interest to oceanographers. The order of the
calculations is practically limited to fifth or sixth order.
Experience has shown that the series in powers of wave
height or slope converges slowly as the breaking limit is
approached, requiring other approximations for very steep
waves.

In practice, a test for stability and accuracy is routinely
applied. This results from computations of the total energy.

E = [dxdy [¢%+gh2] (36)

and the components of the total momentum components

a9

D jdx dy ax, h
These are very accurately (1 part in 10%) conserved when
very steep waves do not develop. It bears emphasizing that
the energy is conserved order by order in the mode ampli-
tudes, i.e., at third and fifth order separately in the approxi-
mate calculations. If, however, local wave breaking
occurs, a marked drift in the energy occurs and the calcula-
tion will terminate because of numerical divergence. The
energy can also drift if the time step has been chosen to be
too large a multiple of the Courant condition.

The tests utilizing (36) and (37) show when the calcula-
tion is inaccurate because of either the time step used or
waves which are steepening and approaching the breaking
point. Reducing the time step may stabilize the calculation,
but more probably, particularly with many component
spectra with random phases assigned, a local interference

(37
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TABLE 1. Fourier Moduli for Case 1 (ho=0.05, k =2r) TABLE 2. Fourier Moduli for Case 2 (hy=0.075, k =2x)
n Vortex wWwW3 WW5 t=0.3125 t =0.5125
1 2.44%1072 244x 1072 2.44 %1072
2 3.65% 107 3.67x10° 3gax1or 0 Voiex  WW3 - WWS Vorlex — WW5
-3 3 -3
" e i'ééﬁ% . 1 371x107% 370x10% 371x102  3.57x10° 3.58x10°
: . i 2 4.03x103 4.08x10> 399x103 738x107° 7.20x1073
3 1.68x1073 1.71x1073 1. -3 . 33, -3
The wave number is 27n. The time is £ =0.5125. The column 4 760x 104 0.43 x 10~ 632 : i8-4 :; gg:}g-_s iig: ig-s
labeled ‘‘vortex’’ contains the lowest four Fourier amplitudes 5§ 376x104 5.04x 104 3.19x 104 8'73 <1074 7'84 x% 104
obtained from the three-dimensional vortex code. The other ¢ 108x10¢ 3.10% 10~ 166 X104 4.96 %10~ 4.00x 10-4
columns are the third and fifth order calculations using the 7 107x10% 2.09%10% 084x10%¢ 275x10°* 2.44x 104

Watson—West method.

pattern has occurred which causes local wave breaking.
The calculation has not yet been adapted to include dissipa-
tive effects to simulate the passage through a
wave-breaking region.

In the development of the formalism and numerical
structure of the method of this paper, a number of tests
were made in one surface dimension, comparing the
Watson-West expansion with the vortex sheet method
summarized in the Appendix. To obtain high accuracy of
the vortex sheet calculations, several careful checks of con-
vergence methods of evaluating the Green’s function and
its singularities and of obtaining slope derivatives were
employed. These are generally similar to the methods out-
lined in the references cited in the appendix. Further
details will be given in a separate paper now in preparation.

The results of the example calculations are summarized
in Tables 1, 2,and 3. These examples are

Case 1: Single wave

k =2mn
hy = 0.05
h(t=0) = hgsinkx
¢t =0) = (—ho/Vk )coskx (38)
Case 2: Single wave
k =2xn
hy = 0.075
h(t=0) = hysinkx
d(t=0) = (~ho/Vk )coskx (39)

Case 3: Composite wave

ki =2mn
k, = 16m
h; = 0.025
h, = 0.025/8

h (f=0) = hlsin(klx)‘l'hzsin(kzx)

¢(f =O) = (—hll\/k_l)cosklx — (hz/‘\ll:;)coskzx
(40)
The Fourier moduli at selected times for several of the
amplitudes are given in the tables. It should be noted that

the single waves have slopes of 0.3142 and 0.4712. The
first wave steepens and fluctuates in form but does not

The wave number is 2nn. The times are 0.3125 and 0.5125.
For the latter case the third—order Watson—West diverged so it
was necessary to go to fifth order.

break; the second breaks at r=0.60. The agreement
between the vortex and the Watson-West calculations (par-
ticularly fifth order in the Fourier mode amplitude) is quite
good, showing no appreciable systematic error. The agree-
ment is well maintained for the two—wave mixture (Figure
1c and Table 3) with a height ratio of 8 between the waves.
More extensive calculations have been made in one dimen-
sion with wavelength ratios of 1024 and amplitude ratios as
high as 10° (Phillips spectrum) with good stability and con-
vergence for all of the Fourier components.

To study phenomena of oceanographic interest, a max-
imum wavelength of the order of 100 m, with the phase
velocity corresponding to a 12.6-m/s wind speed, could be
included in the area analyzed with a minimum wavelength
of the order of 1 m, requiring for a third—order calculation a
mesh of 25 cm. The corresponding number of mesh points
is 400 x 400 for a square mesh and area. The Courant con-
ditions for this mesh and maximum phase velocity is 0.02 s.
The time stepping procedures described in section 2.2
allow the time step to be increased to about 0.2 s. The
period of the longest wave is 1.26 s; the calculation should
follow many wave periods and therefore run for the order
of 1 min or for about 300 time steps.

TABLE 3. Fourier Moduli for Case 3 (h;=0.025, k,=2x;
h,=0.025/8, k,=16m) at t =0.5125

n Vortex WW3 WW 5

1 1.241x10°2 1.242x 1072 1.242% 1072
2 1.000x 107 0.983x10™ 0.977x10
3 1.63x10™ 1.64x 107 1.60x 107
4 3.24x1075 3.76 x 1075 2.59%x 1073
5 1.30%x 106 126%x 1078 147x1078
6 1.41x10™ 1.63x 10 1.68x10™
7 7.12x107* 8.48x10™* 8.29%x10™
8 10.70x10°* 935x%10 9.62x10™
9 8.23x10™ 7.75% 10 7.82x10™
10 4.05%x10™ 3.71x10™* 3.78x 104
11 1.78 x 107 1.74x 107 1.60x 107
12 0.80x10™* 0.85x10* 0.64x 10
13 0.38x10™ 0.79x 10~ 0.53%10™

At t=0, the n=1 and n=8 amplitudes were 2.5x107% and
3.125%x 107, The large change in the amplitudes, particularly
around n =8, is the result of strong interactions with the n=1
wave.
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Fig. 1a. Wave amplitude for case 1 (ko= 0.05, k =2x) as a function of time (z stat).

The computing time is primarily determined by the FFT 3. APPLICATIONS
time. On the code in use at the La Jolla Institute the time on
the Cray X-MP for the third-order calculations in 2 256 X 5 ;
256 spatial grid for a single FFT pair is 0.094 s. The time ~°
for a complete double—pass calculation (predictor, correc- The weak interaction equations have been used to study a
tor) per time step is 2.73 s. The code at Areté, using a fast- variety of surface wave instabilities, in particular, the non-
er than standard FFT completes an entire third order time linear Schrodinger equation, derivable from the mode rate
step on a 512 x 512 grid in 0.50 seconds and on a 256 X equations [Zakharov, 1968; Cohen et al. 1976], has been
256 grid in 0.13 seconds. At a recommended twenty steps used to model the evolution of a weakly nonlinear wave
per cycle for the simple second-order predictor this train [see Yuen and Lake, 1982, and references therein].
amounts to 2.5 seconds/cycle for the shortest wave present. The envelope soliton solution to this equation predicted by

Soliton Stability

T

I TR S N WD U B |

X X X
Fig. 1b. 'Wave amplitude for case 2 (ho = 0.075, k =2n).
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Fig. lc.

Zakharov and Shabat [1972] was experimentally observed
by Lake et al. [1977] and also calculated for water waves
by Cohen et al. [1976] and Bryant [1979]. These coherent
wave packets that balance the linear dispersion of the
waves against the weak nonlinear interactions among the
waves are distinct from the side band instabilities noted by
Benjamin and Feir [1967] for nonlinear wave trains. The
theoretical prediction of the Benjamin—Feir sideband insta-
bility is that of a breakup of a nonlinear wave with the
energy eventually appearing in a number of
small-amplitude  randomized waves. With the
identification of the soliton it was conjectured that the final
state of an unstable Stokes wave would be one or more
asymptotically stable solitons. Lake et al. [1977] found
that instead of these two possible final states, what is
observed is a periodic near—return of the wave train to the
initial state of the system. The modulation induced by the
instability periodically increases and decreases, so that
even though energy is transferred to distant modes in the
spectrum, once the magnitude of the modulation has
reached some critical value, the initial state will reclaim
nearly all of this distant energy with a definite reclamation
frequency. This observed recurrence phenomena has been
calculated using both the nonlinear Schrédinger equation
and the four-wave resonant mode rate equations directly.
It is found however that a soliton is unstable against
transverse perturbation [Cohen et al., 1976; Saffman and
Yuen, 1978; Martin et al., 1980] and therefore is probably
not of general importance in oceanographic context.
Further, the recurrence phenomenon, while interesting,
does not persist in three dimensions.

Cohen et al. [1976] have shown that to a good approxi-
mation a one—dimensional solution to the nonlinear
Schrodinger equation is given by the N~mode decomposi-
tion

Z(x,t)=Ya,(t)expik,x 41)

X

Wave amplitude for case 3.

where the initial mode amplitudes are given by

(N-n)rn

a, (0) = ay (0) sech [ -~ 42)

The central wave number is ky =N Ak, Ak =2=n/L and
the central amplitude ay (0) is determined by the condition

m = kyYa, (0) 43)

From the complex amplitude Z (x,t) the surface potential
and wave height are given by

¢ = x %ReZ (44)
h = -ImZ (45)

The soliton given by (41) is a solution to the full equations
(6) only if the soliton is ‘‘thin,”’ i.e., if the slope parameter
m is small. As the slope increases, the soliton is expected
to become unstable.

This problem has been solved on a 16 x 256 mesh using
the technique described in section 2. Except where indi-
cated, the calculations are carried out to third order in (13)
with 4 x 64 Fourier components. The problem is scaled so
that the horizontal scale is unity and g =1. The maximum
velocity is ¢p=(27)~". The Courant condition is
At <Ax/cp,= (2m)*/256=0.0245. The calculation
runs stably and accurately for the time step used, which
was 0.08. As a check on the calculation, the total energy
and the two momentum components are computed with
each time step. If a significant change in any of these con-
served quantities occurs, a reduction in the time step is
made until the conservation laws are well satisfied.

Figures 2 and 3 give temporal development of solitons
with slopes m =0.16 and m =0.256. The thin soliton is
quite stable but the *‘fat> soliton (m =0.256) slowly radi-
ates energy into wavelengths outside of the original spec-
trum.

\__J
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Fig. 2. Temporal development of the wave amplitude of a *‘thin’’ soliton with m =0.16. Figures 2a, 2b, 2¢, and
2d are att =0, 4, 8, 12. Figures 2e and 2f give the Fourier amplitudes at ¢ =0, 12.

The collision of two solitons has been computed for the
same spatial mesh and time step. The development is given
as Figure 4. Unlike the calculations based on the nonlinear
Schradinger equation [Yuen and Lake, 1982] or a few mode
amplitudes [Cohen et al., 1976], the solitons here are
appreciably perturbed in the collision, and their structure is

not preserved. The Fourier amplitudes also show marked
alteration. This suggests that such coherent structures
would not be sufficiently stable to influence the chaotic
spectrum of wind wave spectra in the open ocean.

The interaction of a thin soliton with a large—amplitude
long-wavelength field has also been determined. The soli-
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Fig. 3. Temporal development of a ‘‘fat’ soliton with m =0.256. Figures 3a, 3b, and 3c are at ¢ =0, 4, 8.08.

Figures 3d and 3e give the Fourier amplitudes atz =0, 8.

ton is the same as in Figure 2 with m =0.16 and a central
mode of N =10. The long waves are modes 3 and 4, with
amplitudes 5 times the central amplitude of the soliton.
Figure 5 gives the propagation of the wave field with the
Fourier amplitudes of modes 3 and 4 removed from the

figure. The soliton is strongly perturbed by the long waves,
failing to ‘‘ride over’’ their passage.

The one-dimensional solitons are also expected to be
unstable against both a longitudinal side-band instability
(the Benjamin—Feir mode) and a transverse perturbation.

\__J

/
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Fig. 4. Collision of two fat solitons. Figures 4a, 4b, 4c, 4d, and 4e are att =0, 4, 8§, 12, 16.

The effect of a single-mode transverse perturbation has
been computed for a 128 x 128 mesh in Figure 6. The
transverse mode numbers 2, 4, 6 (k, =47,81,12 1) were
considered. The soliton has central mode number N =10 with Ax =0.1. The mode number n =2 grew by a factor of
and slope m =0.22. The form of the perturbation is

AZ = AxY a,e'** cos(k, y) 46)

2.2 in 36 time units, but the other modes showed no
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Fig. 5. Propagation of a thin soliton in the presence of large-amplitude, long-wavelength waves. The Fourier
amplitudes of the long waves have been subtracted. Figures 5a, 5b, 5¢, and 5d are at 1 =0, 4, §, 12.

significant growth. This fat soliton also radiated apprecia-
ble energy into longitudinal modes. The growth rate
observed is 20% lower than that determined by Cohen et
al. [1976] in the same parameter regime as the fat soliton.

A regular wave train will grow into an oblique wave
group structure when it is modulated over a length scale
that is large compared with its own wavelength because the
modulation is unstable, McLean et al. [1981] and McLean
(1982] showed that such oblique instabilities dominate
parallel instabilities for wave slopes that are moderate to
large. Hui and Hamilton [1979] calculated wave group
solutions of the nonlinear Schrodinger (NLS) equation in
two horizontal dimensions. If the wave field does not have
a narrow central peak, however, the NLS equation fails as a
model equation of the wave group structures. Secondary
peaks can arise from resonant interactions among the
waves, and Bryant [1984] showed that such resonances do
not arise from oblique wave groups whose group—to-wave
angle is less than tan™ (0.5). For greater angles, reso-
nances can be significant even to the extent that at some
angles they dominate the oblique wave group structure.
This situation can only be described by including the full
nonlinear dynamics in the wave field.

3.2. Three-Dimensional Instabilities

The balance between the linear dispersion and the non-
linear interaction of water waves, so clearly evident in the
use of the nonlinear Schrodinger equation, has been deter-
mined to be of secondary importance in describing the evo-
lution of sea waves. The bifurcation of three—dimensional
water waves, on the other hand, may well be an important
energy transfer mechanism. As was pointed out by Su and
Green [1984], most waves in developing seas are short
crested, a characteristic property of three—dimensional
instabilities and bifurcating waves. In the laboratory, both
these phenomena have led to breaking waves, so that it is
not unreasonable to expect that they will also produce
breaking in the open ocean. Su and Green conjecture that
these instabilities and bifurcation will create local ‘‘order”’
from the surrounding chaos of the ambient wave field.

Recently, observed gravity wave instabilities were
shown to result from the bifurcation of three—dimensional
waves arising from skew rather than colinear perturbations
[Su et al., 1982; Su, 1982]. Infinitely long perturbations
were analyzed by Peregrine and Thomas [1979] using a
modified version of Witham'’s theory and by Saffman and

__/
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Fig. 6. Perturbation of a fat soliton with m =0.22 by a transverse wave. Figures 6a, 6b, 6c, and 6d are at
t =0, 12, 24, 36. The Fourier amplitudes are given in Figures e, 6f, 6g, and 6h at ¢ =0, 12, 24, 36. The Fourier

plots are labeled by mode number.

Yuen [1980] using the mode rate equations. These instabil-
ities are studied herein using the new numerical technique.

In Figure 7a we depict a two—dimensional wave field for
a long—crested wave (kyay=0.30) propagating in the posi-
tive x direction. The initial wave amplitude is

h=hycoskgx +hicos(k;x+kyy)+h cos(ksx+kyy)

with wave members

ko = 16m, ki=24m, k,=22m,
hoky=0.3 h;=0.2h,

The long—crested wave train is seen to undergo a rapid
transition to a regular, symmetric, three—dimensional wave
form. This is shown in Figures 76-7d which correspond
qualitatively to the photographs of symmetric bifurcations
taken by Su [1982]. From Figures 8a-8¢ we visually esti-
mate that the crestwise length of these crescent shaped
bifurcated waves is between 0.8 and 0.85 of the wavelength
of the unperturbed waves. There also appears to be a crest-
wise wave shift between two consecutive rows of crescent
waves in agreement with the observed shift of one-half

k3= —87:

wavelength [Su, 1982] (compare Figure 8¢c). The diagnos-
tics necessary for the code to provide a quantitative deter-
mination of the rate of growth of the instability for com-
parison with, e.g., the analytic calculation of Saffman and
Yuen [1980], have not as yet been developed.

3.3. Dissipation of Single Waves

The persistence of a pattern of waves in the presence of
a background wave field has been considered by many
authors; most recently by Watson [1986). He has investi-
gated the persistence of a modulation pattern of the Kelvin
wake of a surface ship in a surface gravity wave field. The
mechanisms he investigated that promote wave pattern
decay were viscous damping, air-sea interactions, and
three-wave and four-wave interactions. The dominant
mechanism turned out to be a function of wave number and
wind speed. The longest wave perturbation decayed owing
to the air-sea interaction, whereas the decay of those
wavelengths that have a phase velocity much less that the
average wind speed was dominated by the four-wave
interactions, Herein we examine this problem by calculat-
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Fig. 6. (continued)

ing a fully nonlinear ship wake in the presence of a be 0.030. The single pattern wave assumed had mode
wind-generated field of gravity waves. number 285, corresponding to a 4-m wavelength, and slope
We have determined the effects on a single wave of a 0.020. The pattern wave decays by about a factor of 2 in

two—dimensional isotropic Phillips spectrum of sea waves. amplitude in a time scale of four units, giving a decay time
of Wy £ 400y = 60, in approximate agreement with Watson's

The vertical displacement of the ocean surface is given by v
[1986] result of a decay time of about 20 s for a 4-m

the superposition of waves
. wavelength and a 12-m/s wind velocity, or @y ?gecay = 79-
h = 2§0k3m [k, x + kyy +2mR (k. k )] @n The energy is transferred, however, into waves close to the
kx by pattern wave.
with mode amplitudes given by
C 3.4. Ship Wakes
0
a§ = Iz Aky Ak, exp (ks 1k?) (48)  The structure of ship waves and their interaction with an
ambient wave spectrum have been studied, using 128 X

and the maximum wave number, gziven in terms of the 128 and 256 x 256 meshes. A surface disturbance which
average wind speed W, is k,, = g /W*. The phase between approximates the effect of a ship is introduced by incre-
menting the consecutive displacement of several spatial

wind-generated water waves is assumed to be random, so
that R (k,,k,) = random number from O to 1 for each k, k, zones for one or more time steps, with the front of the dis-
pair. The surface potential is given by a similar expression. turbance stepped in the x coordinate in time. From the 128

To scale the problem to the dimensionless units of the cal- x 128 mesh, the pattern was 1 X 4 spatial zones, propagat-
culation, a scale length of 100 m and wind velocity of 12 ing along its axis one Ax zone per time step, with the dis-
m/s were assumed. The Phillips constant Cy was taken to placement increment Ah = hy/4, hy=0.04. For the 256 X
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Fig. 7d

Fig. 7. Two-dimensional wave field showing growth of transverse cusps on a wave field. The wave amplitudes
and wave numbers are given in the text. Figures 7a, 7b, 7¢, and 7d arc at £ =0, 4, 8, 10.

256 mesh, the pattern was 2 X 8 spatial zones, the At
reduced by 2, and Ah = hy/8, hy=0.04. Since the calcu-
lational mesh is periodic, the wakes are from a *‘flotilla’’ of
equally spaced ships which start to interact when the fastest
waves travel from the ships to the boundary and more
strongly when the strong wake reaches the boundary. As is
shown in Figure 9a, the characteristic ‘‘Kelvin wedge’’ in
wave amplitude is observed, together with the curving arcs
predicted by Stoker [1957] and in Lighthill [1978]. Along
the Kelvin wedge, a persistent marked ‘‘herringbone’’ pat-
tern is also observed as shown in the contour plot in Figure
9b. The opening angle of the Kelvin wedge is slightly
affected by the order of the calculation, becoming some-
what larger for the third—order calculation than for the
linear one. The wave structure on the ‘‘herringbone’’ pat-
tern was more dependent on the order, the waves being
steeper and more asymmetric in the higher—order calcula-
tion.

In the presence of the background of a Phillips spectrum,
the waves are rapidly dissipated, as is shown in Figure 9c.
The effect is particularly pronounced for the 256 x 256

mesh with 64 X 64 Fourier components, showing that the
waves are particularly affected by interaction with short
wavelengths,

3.5.

The Watson-West representation is formally an expan-
sion in powers of the wave amplitude. The structure of the
expansion might suggest that the convergence of the expan-
sion may be poor if waves of very different wavelengths
and amplitudes are present (see, for example, West [1981]).
As we discussed in section 2.1 however, the series expan-
sion is independent of the reference surface and is in fact
an expansion in the surface slope at the free surface, not the
reference surface, Thus we avoid the usual problem asso-
ciated with the longwave-shortwave interactions, that
being the convergence of the perturbation expansion for
short waves with slopes of finite size. As an example,
herein we have determined the time evolution of a simple
one—dimensional spectrum with only two initial sinusoidal
components. The surface height is given by

Wave—Wave Interaction
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Fig. 8. Amplitudes of the two—dimensional wave field shown in
Figure 7. The figures give 1/16 of the full wave field. The times
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arez =0, 4, 10.

h = hy sin kyx + hy sin kyx

and the velocity potential at the surface by

o hy k hy K
= — —=cosky;x — —=cosk,x
k, 1 ™ 2

2

1.0

Fig. 9b

v 0.0

Fig. 9¢

Fig. 9. Views of a ship wake generated by a simple linear
source. Figure 9b gives a plan view of equal amplitude contours;
the lines are at the Kelvin~wedge angle. Figures 9a and 9c are
three—dimensional views of the wake from different positions.

where k;=32m®, h1k;=0314,k,=4x, and h,k,=0.157
are the wave numbers and slopes of the two spectral com-
ponents. If the k, wave only is present, no appreciable
steepening occurs. The time development of the composite
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10d, are at £ =0, 0.50, 1.00, 1.25.

wave is given in Figure 10, and that of the Fourier ampli-
tudes is given in Figure 11. In Figure 10a the initial super-
position of the two sinusoidal water waves is given. In
subsequent frames we observe the evolution of the surface
on a time scale of the order of the period of the shorter
wave k;. We observe that the initially smoothly varying
surface begins to suppress small oscillations in the trough
of the large waves and to enhance them near the crest,
After four oscillations of the small wave it is clear that the
crest of the long wave is strongly distorted with most of the
structure arising just behind the crest (the waves are travel-
ing from left to right in the calculation). Close examination
of the figures suggests that the location of maximum modu-
lation of the short wave may be unsteady.

Figure 11a depicts the initial spectrum of the two-wave
system. The evolution of the spectrum arising from non-
linear energy transfer is depicted in sequential frames
corresponding to those of the surface displacement in Fig-
ure 10. These results show rapid transfer of energy into
side bands of the high-frequency waves which coherently
interfere to give a marked reduction in wavelength and
steepening of the high-frequency wave, the effect being
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X

Fig. 10d

Interaction of two sinusoidal waves. The parameters are given in the text. Figures 10a, 10, 10c, and

concentrated, near the peak of the low—frequency wave,
The high—frequency, steepened waves are apparently con-
vected with the low—frequency wave and therefore acquire
a phase velocity close to that of the low—frequency wave.
This strong coupling effect is consistent with the measure-
ments of the phase speed spectral components in a labora-
tory wind tunnel as measured by Ramamonjiarisoa and
Coantic [1976], in which the high—-frequency waves moved
at a constant phase speed near to that of the spectral peak.
The present calculation indicates that the interpretation that
these high—frequency waves represent a distortion of the
spectral peak, rather than freely—traveling waves, may be a
correct one [e.g., Phillips, 1978]. It is clear that the
longwave—shortwave interactions are strong, so that pertur-
bative models that obtain the equations of motion by
expanding in powers of the slope of the short waves may
not properly describe the shortwave modulation. The per-
turbative models should work while the short waves are not
too steep [e.g., Longuet—Higgins and Stewart, 1960;
Longuet-Higgins, 1986].

The calculation shown here is terminated after 1.25 time
units. When the calculation is extended to 2.5 time units,
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Fig. 11.
t=0,0.50,1.00,1.25.

one observes that most of the energy contained in the
high—frequency mode is returned to that mode. A low level
of energy does, however, remain in the other mode contri-
buting to the evolution. Also, the phase relation among the
modes remains such that at the end of 2.5 time units the
surface height resembles that in Figure 11a but with
apparent high—frequency noise superposed. In addition, a
distortion remains in advance of the crest of the
low-frequency wave.

3.6. Sharp—Crested Waves

The following several examples illustrate the ability of
this method to reproduce known nonlinear surface
behavior. Perhaps the most familiar is the periodic, pro-
gressive Stokes wave. We can use either the
one—dimensional or two—dimensional code to develop a
nearly steady Stokes—wave counterpart for several tem-
poral cycles by resorting to a trick, which bootstraps the
simultaneous nonlinear # and ¢ fields. We multiply the
nonlinear terms in the field equations by a scale factor f,
which is set initially to zero, so that the dynamics are

Fourier spectra for Figure 10. The mode number is given. Figures 11q, 11b, 1ic, and 114 are at

linear. The fields (4,¢) are initialized as a progressive
steady sinusoidal solution and the factor f is then increased
smoothly to unity over several cycles.

Figure 12 shows the resulting profile for a
one—dimensional calculation of 128 grid points at third
order in slope. The profile departs by less than 0.10% from
the exact solution of the same slope.

Figure 13 compares the actual spatial overtone ampli-
tudes to the Stokes prediction; the error bands show the
residual temporal unsteadiness of the simulation. The fidel-
ity is good out to seven harmonics even though the dynam-
ics are nonlinear to third order. Figure 14 shows a steady
Stokes-like solution generated similarly in two dimensions
on a 128 x 128 grid.

Figure 15 illustrates the realistic coexistence of waves of
dramatically different length in a single calculation. In this
case the short waves are parasitic capillaries emerging from
the sharp crests of a periodic gravity wave. They are added
to the dynamics by means of a potential energy term

[<l1+(vn )2]”2 dx (51)

-/
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Fig. 12. This almost steady wave profile, generated by the *‘adi-
abatic bootstrap’’ with third—order dynamics on a grid of 128
points, differs from the exact Stokes solution by 0.10% rms. The
ratio of height to wavelength is 0.110.

Stokes Solution

height
=3T - 0.1009

30

40

Fourier Amplitude, dB

7th harmonic 4>I

70

K(c/m)

Fig. 13. The overtone spectrum of the wave in the previous
figure agrees well with the Stokes values through the sixth har-
monic, even with third—order dynamics. The vertical bands depict
the residual temporal unsteadiness of the bootstrapped solution.
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7

Fig. 14. An oblique periodic ‘‘Stokes’’ solution on a grid of 128
x 128 cells. The wave is noticeably sharp—crested at a maximum
slope of 0.376.

in the Hamiltonian (t is the capillary constant) and a
corresponding pressure term

(52)

-V - { Vhi[1+ (Vh)z]m}

in the equation (6) for d¢/dt. These are exact and there is
no reason to approximate them at finite order. The grid is
256 points and the solution is generated by the ‘‘adiabatic
bootstrapping’’ described above.

The random surface shown in Figure 16 is part of a
third—order dynamical simulation on a 512 x 256 grid.
Meant to be ocean-like, it is based on a directionally broad

8
oo'" \/\/\/\
. g
=
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2 o
8
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o
I
=]
£ 24 /\4
Q (=]
=l
%]
T
=
< T T T T T
0.00 2.00 4.00 6.00 8.00 10.00 12.00
X, cm

Fig. 15. A gravity wave of 6 cm wavelength has developed
parasitic capillaries of 0.5 cm wavelength in this 256 point simu-
lation. The kinetic energy is truncated to third dynamical order
but the capillary force is exact. The lower curve depicts surface
height and the upper depicts surface potential.
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Fig. surface resulted from a

16. This realistic looking
third—order dynamical simulation of random waves on a 256 x
512 grid. The corresponding height spectrum is of the form k=4
on a sector of angular width 120° centered in the positive vertical
direction.

(120°) k~* spectrum with an rms slope of 0.113. The non-
linear sharpening of the random crests is real, as the reader
can verify by turning the figure upside down. A dynami-
cally linear surface would not show such asymmetry. The
maximum slope at the instant depicted is 0.649, almost six
times the rms value.

4. CONCLUSIONS

‘We have presented an efficient numerical technique for
integrating the dynamic equations for the free surface dis-
placement of water and the velocity potential on that sur-
face based on the formalism developed by Watson and
West [1975]. The procedure uses a formal height expan-
sion about the free surface of Bernoulli’s equation and the
kinematic boundary condition rather than an expansion
about z =0 that is usually done. The expansion is indepen-
dent of the reference surface and is actually an expansion
of the surface slope on the water surface. The integration
is done by evaluating products of field quantities such as
the surface displacements, surface velocities, surface gra-
dients, etc. in configuration space; fast Fourier transform-
ing these products and time incrementing the transformed
equations to obtain the components of the appropriate field
variables; then transforming (FFT) back to configuration
space to again evaluate the nonlinear products and start the
process again. This technique reduces the number of
operations from N2 to N InN for an N-mode representa-
tion of the surface wave field.

In the main, those calculations involving solitons repro-
duced earlier results including the formation of oblique sol-
itons (section 3.1). Of greater interest was the formation of
the three—dimensional instabilities resulting from the
bifurcation of three—dimensional waves arising from skew
rather than colinear perturbations (section 3.2). The size,
shape, and location of these instabilities were shown to
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agree qualitatively with experiment and analytic estimates.
The calculations of the persistence of surface patterns in a
wind~generated surface wave spectrum were found to be
consistent with those recently obtained by others (section
3.3). There were also no surprises on the formation of the
ship wakes using simple point source-generating mechan-
isms (section 34.). The longwave-shortwave interaction,
when the slope of each is large, produces a strong modula-
tion of the short waves that appears to be nearly
phase—locked to the long wave. This may account for the
observation that the phase speed spectral components move
at a constant speed that is nearly equal to that of the spec-
tral peak (section 3.5). This would be consistent with some
earlier interpretations that the constancy in the phase speed
is a consequence of the high—frequency waves not being
free waves.

APPENDIX: VORTEX SHEET METHOD

Al

The vortex sheet method was developed and applied to
different problems by several groups [Longuet-Higgins,
1976; Pullin, 1982; New et al., 1985; Baker et al., 1982],
with the applications limited to two—dimensional surfaces
(one horizontal and one vertical dimension). The deriva-
tion we give is similar in principle to other results but gen-
eralized to three—dimensional surfaces.

We consider a three—dimensional surface with density p,
below and zero density and pressure above. The momen-
tum equation is

Formulation

d ul
dt

The pressure has no transverse gradient; (Al) therefore
gives

p1 = -Vp-pig (A1)

a du,

X — =
dt
with fi the unit surface normal. The vorticity is localized to
the surface across which the velocity changes from u; to

u,. The vortex sheet strength is

-Axg (A2)

Y=f X (u-u) (A3)
The normal components of u are equal, i.e.,
i - (UZ—UI) =0 (A4)
We define the average velocity at the interface as
1
Q=5 @+uy) (AS)
so that (A3), (A4), and (AS) give
u1=q+%ﬁxy (A6)
Equation (A2) therefore gives
d /. _ ha dq
A x d[(nxy)— 2nx[g+ dt} (A7)

In (A1)-(A6), the convective time derivative is

_J

NG
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d 0
= 2 v
dt az““

The left side of (6) can be rewritten as

ﬂxH%] x4+ﬁx[ﬂx%} =

dii . di .. dy dy

Pl oy - — . — A8
dt f-y-n d yrun dt dt (A8)

In this equation, f-y=0, (d/dt)(h - ) =1 (div/dt) = O,
(didty(h-y)= (di/dt) -y+n *(dy/dt)=0. Equations
(A6) and (A7) therefore combine to give

dy . .dh . 4q
& +y 0 26 X [ g+ 2 (A9)

Equation (A9) gives the time evolution of the sheet vortici-
ty with the convective derivatives following the motion of
the dense fluid. For the two—dimensional problem (x —z)
the vorticity is in the y direction, the surface normal f in
the x, y plane, and the second term in (A9) is zero.

The velocity u; must be determined from . The vorticity
in either fluid is

o=Vxu (A10)
We define a stream function by
u=Vxy (Al])
giving
Viy-Vdivy = -0 (A12)

A gauge can always be chosen for which y=0. Equation
(A12) has the formal solution

y(r) = —jG(r—r’)m(r’)d3r’

The integral of the vorticity across the surface is y. Equa-
tion (A13) therefore can be rewritten

v = - [Ga-r)yds’ (Al4)

with d2s’ the element of surface area along the interface.
The Green’s function for a system without periodic boun-
dary conditions is

(A13)

N
4| r|

In (A13) the principal part of the integral is to be taken.
Correspondingly, the velocities from (A11) are the aver-
ages across the vortex sheet. From the vortex sheet
strength and q, the fluid velocity u; necessary to determine
the motion of the vortex element is obtained from (A6).

For periodic boundary conditions, the Green’s function
can be obtained by summing G (r) over a lattice in coordi-
nate space or by restricting the horizontal wave number
sums in Fourier space. This is computationally tedious in
two surface dimensions but straightforward on a regular
grid from which the spatially varying function can be
obtained by interpolation.

G@) = (A15)

\2. Vortex Sheet Computations

The principal computational difficulty is the evaluation
of the coupled equations for y and u. Since u is coupled to

11,823

¥ by a matrix G (r—r’"), a straightforward procedure used
by Longuet-Higgins and Pullin is the inversion at each
time step of the matrix equation coupling u to y. This is
possible, although nontrivial in the two—dimensional prob-
lem but a major computing requirement for the
two—dimensional problem with 10* to 10° surface elements.
The matrix inversion was avoided by Baker et al. [1982],
who solved the coupled equations by multiple iteration.
This again is relatively simple in two-dimensions but
difficult in three—dimensions. The three—dimensional prob-
lem is also increased in difficulty by the necessity of deter-
mining the three—dimensional stream function v, while the
two—dimensional calculation needs the scalar function .
These problems can be reduced by use of FFTs. This
requires, however, Fourier expansion of the Green’s func-
tion, and power series expansion of the exponential factor
exp [—| k| z(x,y)]. If this is done, the three—dimensional
calculation still requires evaluation of the three
dimensional stream function. It should be noted that the
slope expansion, necessary for use of FFT, also prevents
the vortex sheet method from being used for study of very
steep or breaking waves, which have been successfully
computed only in two dimensions.

For the above reasons, the vortex sheet method has not
(to our knowledge) been used in three dimensions. The
procedure given in section 2 is relatively straightforward,
avoids some of the problems of the vortex sheet method,
and is computationally much more efficient.
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