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Several methods have been previously used to approximate free boundaries in tinite- 
difference numerical simulations. A simple, but powerful, method is described that is based on 
the concept of a fractional volume of fluid (VOF). This method is shown to be more flexible 
and efftcient than other methods for treating complicated free boundary configurations. To 
illustrate the method, a description is given for an incompressible hydrodynamics code, 
SOLA-VOF, that uses the VOF technique to track free fluid surfaces. 

1. INTRODUCTION 

In structural dynamics, it is customary to employ Lagrangian coordinates as the 
basis for numerical solution algorithms. In fluid dynamics, however, both Lagrangian 
and Eulerian coordinates have been used with considerable success. Because each 
coordinate representation has unique advantages and disadvantages, the choice of 
which representation to use depends on the characteristics of the problem to be 
solved. In this paper the emphasis is on Eulerian formulations for problems involving 
free boundaries, in particular, problems where the free boundaries undergo such large 
deformations that Lagrangian methods cannot be used. 

Free boundaries are here considered to be surfaces on which discontinuities exist in 
one or more variables. Examples are free surfaces, material interfaces, shock waves, 
or interfaces between fluid and deformable structures. Three types of problems arise 
in the numerical treatment of free boundaries: (1) their discrete representation, (2) 
their evolution in time, and (3) the manner in which boundary conditions are imposed 
on them. In Section II, a short review is given of different methods that have been 
used for embedding free boundaries in finite-difference or finite-element grids. A 
comparison of the relative advantages and disadvantages of these methods leads to a 
new technique that is simple yet powerful. This method, the volume of fluid (VOF) 
method, is described in Section III. In Section IV, details of the VOF method are 
described as it has been impiemented in an Eulerian hydrodynamics code. The new 
code, SOLA-VOF, is illustrated in Section V with various examples that show the 
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strength of the VOF technique for treating problems involving highly complicated 
free surface flows. Finally, in Section VI, a short summary is provided that 
emphasizes the advantages of the new code. 

II. FREE BOUNDARY METHODS 

Discrete Lagrangian representations for a fluid are conceptually simple because 
each zone of a grid that subdivides the fluid into elements remains identified with the 
same fluid element for all time. Body and surface forces on these elements are easy to 
define, so it is relatively straightforward to compute the dynamic response of the 
elements. In an Eulerian representation the grid remains fixed and the identity of 
individual fluid elements is not maintained. Nevertheless, it is customary to view the 
fluid in an Eulerian mesh cell as a fluid element on which body and surface force 
may be computed, in a manner competely analogous to a Lagrangian calculation. 
The two methods differ, however, in the manner in which the fluid elements are 
moved to nex positions after their new velocities have been computed. In the 
Lagrangian case the grid simply moves with the computed element velocities, while in 
an Eulerian or Arbitrary Lagrangian-Eulerian [ 1 ] calculation it is necessary to 
compute the flow of fluid through the mesh. This flow, or convective flux calculation, 
requires an averaging of the flow properties of all fluid elements that find themselves 
in a given mesh cell after some period of time. It is this “averaging process,” inherent 
in convective flux approximations, that is the biggest drawback of Eulerian methods. 
Convective averaging results in a smoothing of all variations in flow quantities, and, 
in particular, a smearing of surfaces of discontinuity such as free surfaces. The only 
way to overcome this loss in resolution for free boundaries is to introduce some 
special treatment that recognizes a discontinuity and avoids averaging across it. 

As already noted, the process of embedding a discontinuous surface in a matrix of 
computational cells involves three separate tasks. First, it is necessary to devise a 
means of numerically describing the location and shape of the boundary. Second, an 
algorithm must be given for computing the time evolution of the boundary. Finally, a 
scheme must be provided for imposing the desired surface boundary conditions on the 
surrounding computational mesh. The first two problems are related because the 
method of description will govern the choice of evolution algorithm. On the other 
hand, the application of boundary conditions is largely independent of how the 
surface is defined. 

In the remainder of this section, we shall concentrate on the representation and 
evolution problems. We shall also restrict this discussion to two-dimensional 
situations, except for a few remarks concerning analogous three-dimensional methods. 

A. Height Functions 

A simple means of representing a free boundary is to define its distance from a 
reference line as a function of position along the reference line. For example, in a 
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rectangular mesh of cells of width 6x and height Sy one might define the vertical 
height, h, of the free boundary above the bottom of the mesh in each column of cells. 
This would approximate a curve h =f(x, t) by assigning values of h to discrete 
values of x. This method does not work well when the boundary slope, dh/dx, 
exceeds the mesh cell aspect ratio &/6x, and does not work at all for multiple-valued 
surfaces having more than one y value for a given x value. This is a severe limitation 
because many simple shapes, such as bubbles or drops, cannot be treated. However, 
when it can be used, this representation is extremely efficient, requiring only a one- 
dimensional storage array to record the surface height values. Likewise, the evolution 
of the surface only requires the updating of the one-dimensional array (see, for 
example, Ref. [2]). 

In the case of a free fluid boundary, the time evolution of the height function is 
governed by a kinematic equation expressing the fact that the surface must move with 
the fluid, 

where (u, V) are fluid velocity components in the (x, v) coordinate directions. It 
should be noted that Eq. (1) is Eulerian in the horizontal direction, but Lagrangian- 
like in the vertical direction, which is more or less normal to the surface. Finite- 
difference approximations to this equation are easily made [2]. 

The height function method is directly extendable to three-dimensional situations 
[3] for single-valued surfaces describable by, e.g., h =f(x, y, t). 

B. Line Segments 

A generalization of the height function method uses chains of short line segments, 
or points connected by line segments (e.g., Ref. [4]). Coordinates for each point must 
be stored and for accuracy it is best to limit the distance between neighboring points 
to less than the minimum mesh size Sx or &. Therefore, slightly more storage is 
required for this method, but it is not limited to single-valued surfaces. 

The evolution of a chain of line segments is easily accomplished by simply moving 
each point with the local fluid velocity determined by interpolation in the surrounding 
mesh. In this sense the line segment method resembles a Lagrangian mesh line. It is 
more flexible, however, because individual segments may be readily deleted or added 
as required for optimal resolution. Since the segments are linearly ordered, the 
deletion-addition process presents no logical problems. 

Unfortunately, there is one serious difficulty with the line segment method. When 
two surfaces intersect, or when a surface folds over on itself, segment chains must be 
reordered, possibly with the addition or removal of some chains. If such intersections 
are anticipated, the reordering process may not be difficult. In the general case, 
however, the detection of intersections and determining how a reordering should be 
done is not a trivial task. 
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The extension of the line segment method to three-dimensional surfaces is also 
nontrivial [5]. Linear ordering used for two-dimensional lines does not work for 
three-dimensional surfaces. Thus, the determination of neighboring points defining the 
local surface configuration requires a major effort. Similarly the determination of 
surface intersections and additiondeletion algorithm is considerably more complex. 

C. Marker Particles 

Instead of defining a free surface directly, one can also work with the regions 
occupied by fluid. For example, marker particles can be spread over all fluid 
occupied regions with each particle specified to move with the fluid velocity at its 
location [6). Clearly, storage requirements increase significantly with this method 
because of the large increase in the number of point coordinates that must be stored. 
Surfaces are defined as lying at the “boundary” between regions with and without 
marker particles. More specilically, a mesh cell containing markers, but having a 
neighboring cell with no markers, is defined as containing a free surface. The actual 
location of the free surface must be determined by some additional computation 
based on the distribution of markers within the cell. 

Marker particle methods offer the distinct advantage of eliminating all logic 
problems associated with intersecting surfaces. This is primarily a consequence of the 
fact that while particles have to be ordered with well-defined neighbors when marking 
surfaces they do not have to be well ordered when marking regions. The marker 
particle method is also readily extendable to three-dimensional computations, 
provided the increased storage requirements can be tolerated [7]. 

In retrospect, it appears that a method that defines fluid regions rather than 
interfaces offers the advantage of logical simplicity for situations involving interacting 
multiple free boundaries. While the marker particle method provides this simplicity, it 
suffers from a significant increase in required computer storage. It also requires 
additional computational time to move all the points to new locations. It is natural, 
therefore, to seek an alternative that shares the region defining property without an 
excessive use of computer resources. Such a method is described in the next section. 

III. THE VOLUME OF FLUID (VOF) METHOD 

In each cell of a mesh it is customary to use only one value for each dependent 
variable defining the fluid state. The use of several points in a cell to define the region 
occupied by fluid, therefore, seems unnecessarily excessive. Suppose, however, that 
we define a function F whose value is unity at any point occupied by fluid and zero 
otherwise. The average value of F in a cell would then represent the fractional volume 
of the cell occupied by fluid. In particular, a unit value of F would correspond to a 
cell full of fluid, while a zero value would indicate that the cell contained no fluid. 
Cells with F values between zero and one must then contain a free surface. Thus, the 
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fractional volume of fluid (VOF) method [5] provides the same coarse interface 
information available to the marker particle method. Yet the VOF method requires 
only one storage word for each mesh cell, which is consistent with the storage 
requirements for all other dependent variables. 

In addition to defining which cells contain a boundary, marker particles also define 
where fluid is located in a boundary cell. Similar information can be obtained in the 
VOF method. The normal direction to the boundary lies in the direction in which the 
value of F changes most rapidly. Because F is a step function, however, its 
derivatives must be computed in a special way, as described below. When properly 
computed, the derivatives can then be used to determine the boundary normal. 
Finally, when both the normal direction and the value of F in a boundary cell are 
known, a line cutting the cell can be constructed that approximates the interface 
there. This boundary location can then be used in the setting of boundary conditions. 

Although the VOF technique can locate free boundaries nearly as well as a 
distribution of marker particles, and with a minimum of stored information, the 
method is worthless unless an algorithm can be devised for accurately computing the 
evolution of the F field. The time dependence of F is governed by the equation, 

This equation states that F moves with the fluid, and is the partial differential 
equation analog of marker particles. In a Lagrangian mesh, Eq. (2) reduces to the 
statement that F remains constant in each cell. In this case, F serves solely as a flag 
identifying cells that contain fluid. In an Arbitrary Lagrangian-Eulerian mesh, the 
flux of F moving with the fluid through a cell must be computed, but as noted in 
Section II, standard finite-difference approximations would lead to a smearing of the 
F function and interfaces would lose their definition. Fortunately, the fact that F is a 
step function with values of zero or one permits the use of a flux approximation that 
preserves its discontinuous nature. This approximation, referred to as a donor-ac- 
ceptor method [8], is described in more detail in Section IV (Subsection D). 

In summary, the VOF method offers a region-following scheme with minimum 
storage requirements. Furthermore, because it follows regions rather than surfaces, all 
logic problems associated with intersecting surfaces are avoided with the VOF 
technique. The method is also applicable to three-dimensional computations, where 
its conservative use of stored information is highly advantageous. 

Thus, the VOF method provides a simple and economical way to track free boun- 
daries in two- or three-dimensional meshes. In principle, the method could be used to 
track surfaces of discontinuity in material properties, in tangential velocity, or any 
other property. The particular case being represented determines the specific 
boundary condition that must be applied at the location of the boundary. For 
situations where the surface does not remain fixed in the fluid, but has some 
additional relative motion, the equation of motion, Eq. (2) must be modified. 
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Examples of such applications are shock waves, chemical reaction fronts, and boun- 
daries between single-phase and two-phase fluid regions. 

In the next section a program is presented for using the VOF method to define free 
surfaces in an Eulerian hydrodynamics code. 

IV. SOLA-VOF 

Eulerian finite-difference methods for computing the dynamics of incompressible 
fluids are well established. The first method to successfully treat problems involving 
complicated free surface motions was the marker-and-cell (MAC) method [6]. This 
method was also the first technique to use pressure and velocity as the primary 
dependent variables. MAC employed a distribution of marker particles to define fluid 
regions, and simply set free surface pressures at the centers of cells defined to contain 
the surface. No attempt was made to apply the pressure boundary condition at the 
actual location of the boundary within the surface containing cell. This crude approx- 
imation was later improved [9], and marker particles were eliminated in favor of 
particle chains on the free surfaces [4]. 

A simplified version of the basic solution algorithm (SOLA) used in the MAC 
method is available [lo] in a user-oriented code called SOLA. Although SOLA does 
not treat free surfaces, an extended version, SOLA-SURF, is also available [lo] that 
uses the surface height function method (see Section 1I.A). The basic simplicity and 
flexibility of the SOLA codes make them excellent foundations for the development of 
more sophisticated codes. For this reason, a variable mesh version of the SOLA code, 
SOLA-VM, was chosen as a basis for illustrating the VOF technique. An 
experimental version of this new code, SOLA-VOF, was first reported in Ref. [5]. 
Since that time, many improvements have been made and the basic technique has 
matured through applications to a wide class of problems. In a related development 
[ 111, McMaster and co-workers have recently combined the SOLA-SURF code with 
a different interface tracking technique based on a VOF-like concept [ 121. 

The following subsections provide a description of the SOLA-VM solution 
algorithm with particular attention devoted to the special considerations needed in 
making finite-difference approximations in nonuniform meshes. Subsequent 
subsections describe the VOF algorithms for advection and for locating interfaces. 

FIG. 1. Schematic of finite-difference mesh with variable rectangular cells. 
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A. Outline 

SOLA-VM uses an Eulerian mesh of rectangular cells having variables sizes, 6xi 
for the ith column and S-vj for thejth row, as shown in Fig. 1. While not as flexible 
as a mesh composed of arbitrary quadrilaterals, the variable mesh (VM) capability of 
SOLA-VM gives it a considerable advantage over methods using equal-sized rec- 
tangles. 

The fluid equations to be solved are the Navier-Stokes equations, 

au au au ap ~+u~+vay=-~ +,,+v[~+$++~-;)]~ 

~+u~+vg=-~+g,+” [ 
a*u a% r av 

ay s+ayz+;z * I (3) 

Velocity components (u, v) are in the Cartesian coordinate directions (x, y) or cylin- 
drical coordinate directions (r, z), respectively. The choice of coordinate system is 
governed by the value of <, where < = 0 corresponds to Cartesian and r = 1 to cylin- 
drical geometry. Body accelerations are denoted by (g,, g,,) and r is the coefticient 
of kinematic viscosity. Fluid density has been normalized to unity. For an incom- 
pressible fluid, the momentum equations, Eqs. (3), must be supplemented with the 
incompressibility condition, 

Sometimes, it is desirable to allow limited compressibility effects [ 131 (e.g., acoustic 
waves) in which case Eq. (4) must be replaced with 

I ap au au <U 
-gz+-+-ty=o, ax ay (5) 

where c is the adiabatic speed of sound in the fluid (and the mean density is unity). 
Since Eq. (5) adds more flexibility with little additional complexity, it is used in the 
remainder of this discussion. 

Discrete values of the dependent variables, including the fractional volume of fluid 
(F) variable used in the VOF technique, are located at cell positions shown in Fig. 2. 

The volume of fluid function F is used to identify mesh cells that contain fluid. A 
free surface cell (i, j) is defined as a cell containing a nonzero value of F and having 
at least one neighboring cell, (i f 1,j) or (i,j f l), that contains a zero value of F. 
Cells with zero F values are called empty cells, and cells with nonzero F values and 
no empty neighbors are treated as full or interior fluid cells. The SOLA-VOF code 
also has provisions for defining any cell or combination of cells in the mesh to be 
obstacle cells into which fluid cannot flow. 

Briefly, the basic procedure for advancing a solution through one increment in 
time, at, consists of three steps: 
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FIG. 2. Location of variables in a typical mesh cell. 

(1) Explicit approximations of Eq. (3) are used to compute the first guess for 
new time-level velocities using the initial conditions or previous time-level values for 
all advective, pressure, and viscous accelerations. 

(2) To satisfy the continuity equation, Eq. (5), pressures are iteratively 
adjusted in each cell and velocity changes induced by each pressure change are added 
to the velocities computed in step (1). An iteration is needed because the change in 
pressure needed in one cell to satisfy Eq. (5) will upset the balance in the four 
adjacent cells. 

(3) Finally, the F function defining fluid regions must be updated to give the 
new fluid configuration. 

Repetition of these steps will advance a solution through any desired time interval. 
At each step, of course, suitable boundary conditions must be imposed at all mesh 
and free-surface boundaries. Because most of these details have been presented 
elsewhere (Refs. [2, 4, 6, 13]), they will not be repeated here. In the remaining 
sections emphasis will be on those features that represent extensions of the previously 
reported methodology. In particular, special considerations required when dealing 
with nonuniform meshes and the details of the VOF method for defining and tracking 
interfaces are discussed. 

B. Variable Mesh Approximations 

In the following, the notation Qy,j stands for the value of Q(x, y, t) at time n 6t and 
at a location centered in the ith cell in the x-direction and jth cell in the y-direction. 
Half-integer subscripts refer to cell boundary locations. For example, Qy, j+ L,2, refers 
to the value of Q on the boundary between the j and j + 1 cells in the y-direction. 

A generic form for the finite-difference approximation of Eq. (3) in MAC-type 
methods is 

n+1 
‘i+ 1/2,j = ‘:+ 1/2 J’ , + dt 

[ ( 
- pl,‘:,j - ~7,: ’ 

,i 
ZX~+ 112 + g, - FUX - FUY + VISX , 1 

)/ 1 
(6) 

U??’ (,J+ 112 = V;,j+ 112 + at py,;i L -P!,) ’ 6Yj+ l/z + g, - FVX - FVY + VISY . 
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Here 6x,+ I,z = 1/2(6X, + 6X,+ I) ad G’j+ y2 = 1/2(Sy, + 6yi+ ,). The advective and 
viscous acceleration terms have an obvious meaning; e.g., FUX means the advective 
flux of u in the x-direction, etc. These terms are all evaluated using the old time level 
(n) values for velocities. 

As far as the basic solution procedure is concerned, the specific approximations 
chosen for the advective and viscous terms in Eq. (6) are relatively unimportant, 
provided they lead to a numerically stable algorithm. Special care must be exercised, 
however, when making aproximations in a variable mesh like that of Fig. 1. The 
problem is best illustrated by considering the procedure used in the original MAC 
method for Cartesian coordinates. In the MAC method, Eqs. (3) and (4) were first 
combined so that the convective flux terms could be written in a divergence form (i.e., 
V . uu instead of u . Vu). Thus, FUX would be, for example, &*/ax rather than 
u(&@x). The divergence form was preferred in MAC because it provided a simple 
way to ensure conservation of momentum in the difference approximations. This may 
be seen by considering the control volume used for ui+ u2,, that is indicated by dashed 
lines in Fig. 3. With the divergence form, Gauss’ theorem may be used to convert the 
integrated value of FUX over the control volume to boundary fluxes at its sides. 
Then, the flux leaving one control volume will automatically be gained by the 
adjacent volume and conservation during advection is guaranteed. 

Unfortunately, conservation in a variable mesh does not automatically imply 
accuracy. To see this, suppose an upstream or donor-cell difference approximation is 
used for FUX = &*/ax, which is known to provide a conditionally stable algorithm. 
Assuming the u velocity is positive, the donor cell approximation is 

FUX= [“i+l,j(ui+I,j>-ui,j(ui,j>l axi+1/2~ (7) 
where, for example, 

#i,j= t”i--112.j + ui+*/2.j)/2; 

C”i,j> = ui- l/*,jv if ui,j > 0, 

= ui+ l/*,j~ if uivj ( 0. 

Expanding Eq. (7) in a Taylor series about the location, xi+ i,*, where the u-equation 
is evaluated, yields 

g + 0(6x). O-9 

FIG. 3. Control volume (dashed rectangle) used for constructing a finite-difference approximation for 
the u momentum equation at location (i + l/?,j). 
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Thus, the zeroth order term is incorrect unless the cell widths are equal, 6x, = 6Xi+, . 
In other words, the variable mesh reduces the order of approximation by one, and in 
this case leads to an incorrect zeroth order result. If a centered rather than a donor- 
cell approximation had been used, the result would have been first order accurate and 
not second order as it is in a uniform mesh. 

It does not follow, however, that variable meshes are necessarily less accurate 
because they do allow finer zoning in localized regions where flow variables are 
expected to vary most rapidly. Nevertheless, variable meshes must be used with care. 
It is best, for example, to allow for gradual variations in cell sizes to minimize the 
reduction in approximation order. It is also worthwhile to look for other approx- 
imations that do not lose their accuracy in a variable mesh. In this regard, it should 
be noted that the reason the conservation form of the advective terms lose accuracy is 
that the control volumes are not centered about the positions where variables are 
located. Because of this the advective terms should be corrected to account for the 
difference in locations of the variables being updated and the centroids of their 
control volumes. When this is not done a lower order error is introduced. 

The stability advantages of the donor-cell method can be retained in a variable 
mesh with no reduction in formal accuracy, if the u . Vu form is used for the 
advection flux. At the same time, it is also possible to combine the donor-cell and 
centered-difference approximations into a single expression with a parameter, a, that 
controls the relative amount of each one. The general form at (i + f,j) is 

FUX = C”i+ I/*,j16xx,)[dxi+l DUL + 6x, DUR + a sgn(u)(dxi+ i DUL - 6xi DUR)], 
(9) 

where 

6x, = 6x,+ 1 + 6xi + a sgn(u)(dx,+ i - 6xi), 

and where sgn(u) means the sign of u~+~*,~. When a = 0, this approximation reduces 
to a second order accurate, centered-difference approximation. When a = 1, the first 
order donor-cell form is recovered. Thus, using the approximation defined in Eq. (9), 
there is no loss of formal accuracy when a variable mesh is used. 

The basic idea used in Eq. (9) is to weight the upstream derivative of the quantity 
being fluxed more than the downstream value. The weighting factors are 1 + a and 
1 -a, for the up and downstream derivatives, respectively. The derivatives are also 
weighted by cell sizes in such a way that the correct order of approximation is main- 
tained in a variable mesh. This type of approximation is used in SOLA-VOF for all 
convective flux terms appearing in Eq. (6). Viscous accelerations are approximated 
with standard centered approximations. 
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C. Continuity Equation Approximation 

Velocities computed from Eq. (6) must satisfy the continuity equation, Eq. (5). In 
order to satisfy this equation the pressures (and velocities) must be adjusted in each 
computational cell occupied by fluid. This is done by an iterative process. In each 
cell full of fluid the pressure is changed to either draw in or force out fluid as 
necessary to satisfy Eq. (5). Because adjustments in one cell affect neighboring cells a 
number of passes through the mesh are necessary to satisfy continuity everywhere. 

In cells containing a free surface a different procedure is required because the 
pressure is assumed specified at a surface. In this case the surface cell pressure, pi,j, 
is set equal to the value obtained from a linear interpolation (or extrapolation) 
between the desired pressure at the surface, ps, and a pressure, pN , inside the fluid, 

Pi, j = (1 - v> PN t rlPs 3 

where v = d,/d is the ratio of the distance between cell centers to the distance 
between the free surface and the center of the neighbor cell (see Fig. 4). For this 
scheme to work, the adjacent cell chosen for the interpolation should be such that the 
line connecting its center to the center of the surface cell is closest to the normal to 
the free surface. The cell selected in this way is referred to as the interpolation 
neighbor of the surface cell. 

D. Approximations for Volume of Fluid Function 

1. Advancing F in Time 

The VOF function F is governed by Eq. (2). For an incompressible fluid, Eq. (4) 
may be combined with Eq. (2) to yield the equation 

Surface 
Cell 

,’ 

lnterpolotion 
Cel I 

FIG. 4. Sketch showing definition of quantities used in defining free surface pressure boundary con- 
dition. 
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where r = x when < = 1 and r = 1 when < = 0. Even when the fluid is slightly 
compressible and Eq. (5) replaces Eq. (4), this equation for F is still an acceptable 
approximation. Equation (lo), which is in divergence form, is here more convenient 
for numerical approximation and is the form used in the following discussion. When 
Eq. (10) is integrated over a computational cell, the changes in F in a cell reduce to 
fluxes of F across the cell faces. As previously noted, special care must be taken in 
computing these fluxes to preserve the sharp definition of free surfaces. The method 
employed in SOLA-VOF uses a type of donor-acceptor flux approximation [8]. The 
essential idea is to use information about F downstream as well as upstream of a flux 
boundary to establish a crude interface shape, and then to use this shape in 
computing the flux. Several researchers have previously used variations of this 
approach for tracking material interfaces (see, e.g., Refs. [8, 14, 151). The VOF 
method differs somewhat from its predecessors in two respects. First, it uses infor- 
mation about the slope of the surface to improve the fluxing algorithm. Second, the F 
function is used to define a surface location and orientation for the application of 
various kinds of boundary conditions, including surface tension forces. 

The basic advection method as developed for use in the VOF technique may be 
understood by considering the amount of F to be fluxed through the right-hand face 
of a cell during a time step of duration 6t. Fluxes across other cell faces are 
completely analogous. The total flux of fluid volume and void volume crossing the 
right cell face per unit cross sectional area is V= u dt, where u is the normal velocity 
at the face. The sign of u determines the donor and acceptor cells, i.e., the cells losing 
and gaining fluid volume, respectively. For example, if u is positive the upstream or 
left cell is the donor and the downstream or right cell the acceptor. The amount of F 
fluxed across the cell face in one time step is 6F times the face cross-sectional area, 
where 

6F = MIN(F,, 1 I’] + CF, F, dx,}, 

and where 

CF = MAX((1.0 -FAD) 1 V( - (1.0 -F,) 6x,, O.O}. (11) 

Single subscripts denote the acceptor (A) and donor (D) cells. The double subscript, 
AD, refers to either A or D, depending on the orientation of the interface relative to 
the direction of flow as explained below. 

Briefly, the MIN feature in Eq. (11) prevents the fluxing of more fluid from the 
donor cell than it has to give, while the MAX feature accounts for an additional fluid 
flux, CF, if the amount of void to be fluxed exceeds the amount available. Figure 5 
provides a pictorial explanation of Eq. (11). The donor and acceptor cells are defined 
in Fig. 5a for fluxing across a vertical cell face. When AD = D, the flux is an 
ordinary donor-cell value, 

in which the F value in the donor cell is used to define the fractional area of the cell 
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(b) AD=D 

213 

(c) AD=A (d) AD=A 

FIG. 5. Examples of free surface shapes used in the advection of F. The donor-acceptor arrangement 
is shown in (a), where the dashed line indicates the left boundary of the total volume being advected. 
The cross-hatched regions shown in (b-d) are the actual amounts of F fluxed. 

face fluxing fluid; see Fig. 5b. As discussed in Section IV.F, numerical stability 
requires that 1 VI be less than 6x, so that it is not possible to empty the donor cell in 
this case. 

When AD = A, the value of F in the acceptor cell is used to define the fractional 
area of the cell face across which fluid is flowing. In case (c) of Fig 5, all the fluid in 
the donor cell is fluxed because everything lying between the dashed line and the flux 
boundary moves into the acceptor cell. This is an example exercising the MIN test in 
Eq. (11). In case (d) of Fig. 5, more fluid than the amount F, 1 VI, must be fluxed, so 
this is an example exercising the MAX test. In particular, the extra fluid between the 
dashed line and the flux boundary is equal to the CF value in Eq. (11). 

Whether the acceptor or donor cell is used to determine the fractional area for fluid 
flow depends on the mean surface orientation. The acceptor cell is used when the 
surface is convected mostly normal to itself; otherwise, the donor cell value is used. 
However, if the acceptor cell is empty, or if the cell upstream of the donor cell is 
empty, then the acceptor cell F value is used to determine the flux regardless of the 
orientation of the surface. This means that a donor cell must fill before any fluid can 
enter a downstream empty cell. 

The reason for testing on surface orientation is that an incorrect steepening of 
surface waves will occur if the acceptor cell is always used to compute fluxes. 
Consider, for example, a horizontal surface with a small wave moving in the positive 
x-direction. A flux based on the downstream (acceptor) value of F will eventually 
steepen the wave into a step discontinuity. In effect, the acceptor method is 
numerically unstable because it introduces a negative diffusion of F (i.e., a diffusion- 
like transport with a negative coefficient). Instabilities do not grow unbounded, 
however, because of the MIN and MAX tests used in the flux definition. In contrast, 
when the surface is advecting normal to itself, a steepening that keeps the step- 
function character of F is exactly what is wanted. 
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Once the flux has been computed by the above method, it is multiplied by the flux 
boundary area to get the amount of fluid to be subtracted from the donor cell and 
added to the acceptor cell. When the process is repeated for all cell boundaries in the 
mesh, the resulting F values correspond to the time-advanced values satisfying 
Eq. (10) and still sharply define all interfaces. 

2. Bookkeeping Adjustments 

The new F values determined by the above method may occasionally have values 
slightly less than zero or slightly greater than unity. Therefore, after the advection 
calculation has been completed, a pass is made through the mesh to reset values of F 
less than zero back to zero and values of F greater than one back to one. 
Accumulated changes in fluid volume introduced by these adjustments during a 
calculation are recorded and may be printed out at any time. 

There is one other adjustment needed in F in order that it may be used as a surface 
cell flag. Surface cells have values of F lying between zero or one; however, in a 
numerical solution F values cannot be tested against exact numbers such as zero and 
one because rsundoff error would cause spurious results. Instead, a cell is defined to 
be empty when F is less than sF and full when F is greater than 1 - eF, where sF is 
typically 10m6. If, after advection, a cell has an F value less than E,, this F is set to 
zero and all neighboring full cells become surface cells by having their F values 
reduced from unity by an amount 1. Is,. These changes in F are also included in the 
accumulated volume change. Volume errors after hundreds of cycles are typically 
observed to be a fraction of a per cent of the total fluid volume. 

3. Determining Interfaces Within a Cell. 

For the accurate application of boundary conditions, knowledge of the boundary 
location within a surface cell is required. In the VOF technique, it is assumed that the 
boundary can be approximated by a straight line cutting through the cell. By first 
determining the slope of this line, it can be moved across the cell to a position that 
intersects the known amount of fluid volume in the cell. 

To determine the surface slope, it must be recognized that the surface can be 
represented either as a single-valued function Y(x) or as X(y), depending on its orien- 
tation. If the surface is representable as Y(x), we must compute dY/dx. A good 
approximation to Y(x) is 

Yi=Y(xi)=F(i,j- 1)6yj-,+F(i,j)dyi+F(i,j+ l)Jyj+rv 

where Y = 0 has been taken as the bottom edge of the j - 1 row of cells. Then, 

(dY/dX)i = 2( Yi+ I- Yi- ,)/(6Xi+ I+ 26X, + 6x,- 1). (12) 

A similar calculation can be made for dX/dy, 

Xi=X(yj)=F(i- l,j)&-, +F(i,j)ax,+F(i+ l,j)dxi+,, 



VOLUME OF FLUID METHOD 215 

and 

(dxldY)j = 2(xj+ 1 -xj-l>l(sYj+1+26Yj+6Yj-l)* 

If ] dY/dx] is smaller than ]dX/dy ], the surface is more nearly horizontal than 
vertical, otherwise it is more nearly vertical. In any case, the derivative with the 
smallest magnitude gives the best approximation to the slope because the 
corresponding Y or X approximation is most accurate in that case. 

Suppose ]dY/dx] is smallest so the interface is more horizontal than vertical. If 
dX/dy is negative, fluid lies below the surface, and cell (i,j- 1) is used as the inter- 
polation neighbor for surface cell (i,j). Had dX/dy been positive, cell (i,j + 1) would 
be chosen for the neighboring interpolation cell because fluid would then be above the 
surface. 

Once the surface slope and the side occupied by fluid have been determined, a line 
can be constructed in the cell with the correct amount of fluid volume lying on the 
fluid side. This line is used as an approximation to the actual surface and provides 
the information necessary to calculate v for the application of free surface pressure 
boundary conditions, as described in Section 1V.C. 

For cylindrical coordinates, the above computations are more complex because of 
the volume dependence on radius. Except for cells on the axis, however, the exact 
results differ little from the simpler Cartesian coordinate results; consequently, the 
latter are used in both cases. 

Surface tension effects may be included in SOLA-VOF with little additional effort 
[ 161. The essential step is to compute a local curvature in each surface cell using the 
Y(x) or X(y) definitions, Eqs. (12)-( 13), and from this an effective surface tension 
pressure, ps, to be applied at the surface. 

E. Boundary Conditions 

1. Mesh Boundaries 

In addition to the free surface boundary conditions, it is necessary to set conditions 
at all mesh boundaries and at surfaces of all internal obstacles. At the mesh boun- 
daries, a variety of conditions may be set using the layer of fictitious cells 
surrounding the mesh. The basic idea is to set values for the dependent variables in 
the fictitious cells such that the desired boundary conditions are met at the boun- 
daries. Using this technique the SOLA-VOF program has provisions for rigid-free or 
no-slip walls, for continuative outflow boundaries, for periodic boundaries, and for 
specified pressure boundaries. These conditions, as well as those to be set at free 
surfaces, are set in the same manner as in all previous SOLA codes [2]. 

F. Numerical Stability Considerations 

Numerical calculations often have computed quantities that develop large, high 
frequency oscillations in space, time, or both. This behavior is usually referred to as a 
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numerical instability, especially if the physical problem being studied is known not to 
have unstable solutions. When the physical problem does have unstable solutions and 
if the calculated results exhibit significant variations over distances comparable to a 
cell width or over times comparable to the time increment, the accuracy of the results 
cannot be relied on. To prevent this type of numerical instability or inaccuracy, 
certain restrictions must be observed in defining the mesh increments 6x, and 6y,, the 
time increment 6t, and the upstream differencing parameter a. 

For accuracy, the mesh increments must be chosen small enough to resolve the 
expected spatial variations in all dependent variables. When this is impossible 
because of limitations imposed by computing time or memory requirements, special 
care must be exercised in interpreting calculational results. For example, in 
computing the flow in a large chamber it is usually impossible to resolve thin 
boundary layers along the confining walls. In many applications, however, the 
presence of thin boundary layers is unimportant and free-slip boundary conditions 
can be justified as a good approximation. 

Once a mesh has been chosen, the choice of the time increment necessary for 
stability is governed by two restrictions. First, material cannot move through more 
than one cell in one time step because the difference equations assume fluxes only 
between adjacent cells. Therefore, the time increment must satisfy the inequality 

where the minimum is with respect to every cell in the mesh. Typically, 6t is chosen 
equal to one-fourth to one-third of the minimum cell transit time. Second, when a 
nonzero value of kinematic viscosity is used, momentum must not diffuse more than 
approximately one cell in one time step. A linear stability analysis shows that this 
limitation implies 

With 6t chosen to satisfy the above two inequalities, the last parameter needed to 
ensure numerical stability is a. The proper choice for a is 

As a rule of thumb, an a approximately 1.2 to 1.5 times larger than the right-hand 
member of the last inequality is a good choice. If a is too large an unnecessary 
amount of numerical smoothing (diffusion-like truncation errors) may be introduced 
[171. 
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V. SAMPLE PROBLEMS 

Six calculational examples have been chosen to illustrate the accuracy and 
capabilities of the SOLA-VOF code. In all these examples, either experimental or 
analytical information is available for comparison with the calculated results. These 
examples offer a substantial challenge to any free boundary method. 

A. Broken Dam Problem 

In this example, a rectangular column of water, in hydrostatic equilibrium, is 
confined between two vertical walls, Fig. 6. The water column is 1.0 units wide and 
2.0 units high. Gravity is acting downward with unit magnitude. At the beginning of 
the calculation, the right wall (dam) is removed and water is allowed to flow out 
along a dry horizontal floor. Experimental results for this problem have been reported 
[ 181 for the position vs time of the leading edge of the water as it flows to the right 
(Fig. 7). 

This is a good test problem because it has simple boundary conditions and a 
simple initial configuration. The appearance of both a vertical and horizontal free 
surface, however, provides a check on the capability of SOLA-VOF to treat free 
surfaces that are not single valued with respect to x or y. Results from two 
calculations are presented in Fig. 7 with the experimental data. In both cases, the 
mesh consisted of 40 uniformly spaced columns (6x = 0.1) and 22 nonuniformly 
spaced rows. The smallest & values are located at the bottom of the mesh, where 
resolution is needed to define the thin leading edge of the advancing water. In the first 
calculation, the smallest Sy was 0.05, while in the second it was 0.025. We see from 
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FIG. 6. Velocity vectors and fluid configurations for broken dam problem at times 0.0, 0.9, 1.4, and 
2.0. Vectors are drawn from cell centers, which are marked by + signs. The free surface is drawn as an 
F = 4 contour line, which is why the top right corner at I = 0.0 is not 900. 
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FIG. 7. Comparison of calculated results with experimental data for the broken dam problem. 
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FIG. 8. Velocity vectors and fluid configuration for undular bore problem at times 0.0. 4.05. 7.02. 
and 10.08. 
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Fig. 7 that the best results are obtained with the smallest Sy case, but both results are 
still quite good. The greatest deviation from the experimental results is everywhere 
less than one cell width. 

The smallest Sy calculation required 460 time cycles to get the water to the right 
wall (x = 4.0) and used 328 set of CDC-7600 computer time (which included a 
considerable amount of numerical and graphical output). 

B. Undular Bore 

If a horizontal layer of water is pushed into a rigid, vertical wall there will be a 
step wave, or bore, produced that runs away from the wall. If the incident velocity is 
not too great, the bore front will have a well-behaved, undular shape, but at 
sufficiently high velocities the bore front will break and be highly irregular. In either 
case, conservation of mass and momentum principles may be used to derive “jump” 
conditions that should exist across the bore transition [ 191. 

SOLA-VOF was used to compute the undular bore evolution shown in Fig. 8. The 
initial configuration in Fig. 8a consists of a uniform mesh of 20 cells in the horizontal 
direction (6x = 0.6) and 8 cells in the vertical direction (Sy = 0.2). Fluid initially fills 
the lowest live rows (depth 1.0) and is uniformly moving to the right with unit 
velocity. The right, bottom, and top walls are rigid, free-slip boundaries. At the left 
boundary, fluid is continuously input to prevent any waves from being generated 
there. Gravity acts downward with unit magnitude. 

FIG. 9. Velociy vectors and fluid configuration for breaking bore problem at times 0.0, 6.50, 8.51, 
and 14.01. 
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Although this problem is very coarsely resolved, the results are remarkably good 
and provide a nice check on mass and momentum conservation. The computed jump 
height at the right wall is 1.201, while theory predicts 1.209. A more finely resolved 
calculation using a mesh consisting of 60 by 12 cells yielded a height of 1.203, which 
is converging to the theoretical answer. 

The coarse mesh calculation took 14 set of computer time to complete 48 cycles of 
calculation. 

C. Breaking Bore 

A more interesting example is produced by decreasing the gravitational 
acceleration in the above example from unity to 0.4548. In this case, the bore tran- 
sition is turbulent and involves a water elevation change from 1.0 to 2.8. Fluid 
configurations and velocity fields at selected times, showing the development of the 
bore, are shown in Fig. 9. In this case the computational mesh consisted of 50 equally 
spaced cells in the x-direction (6x = 0.25) and 20 cells with variable spacing in the y- 
direction. The variable spacing was chosen to give liner resolution around y = 1.0, 
where a shear layer is formed as the incoming water flows into the bore front. 

Experimental evidence indicates that turbulent bore transitions have widths that are 
typically equal to about five times the change in elevation (2.8 - 1.0 = 1.8). This is 
consistent with the calculational results, even though the calculation is not computing 
true turbulence. A better measure of the accuracy of the calculation is the final height 
at the right wall, which is 2.91 and is in good agreement with the theoretical value, 
2.8. 

No special considerations were needed to maintain the resolution of the free 
surface as it continually folds over on itself, the VOF technique handles this 
automatically. This calculation required 292 set of CDC-7600 computer time for 457 
cycles of computation. 

FIG. 10. Evolution of a Rayleigh-Taylor instability started by a pressure perturbation. Times are 
0.0, 0.4, 0.8, and 1.6. 
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D. Rayleigh-Taylor Instability 

Because the success of the VOF technique is based on the ability to numerically 
advect a step-function distribution (F) without numerical smoothing, it is worthwhile 
to investigate the sensitivity of SOLA-VOF to changes in the F-advection algorithm. 
A good problem for this purpose is the nonlinear development of a Rayleigh-Taylor 
instability. During the early stages of the instability the fluid surface moves normal to 
itself, but during the later stages there are regions along the sides of the growing 
liquid fingers where the flow is mostly tangential to the surface. Thus, this problem 
offers a good test of the particular combination of donor- and acceptor-cell fluxing 
used in the code. 

The initial fluid configuration consists of an inviscid fluid occupying the top half of 
a box that has a width of 1.0 and height of 3.0. Gravity is acting downward with unit 
magnitude. The free surface is given an applied pressure pulse,p, = cos(a~), that acts 
only during the first cycle of calculation. This pulse perturbs the unstable fluid 
surface, causing it to flow down along the right edge of the box in the form of a fluid 
spike, while a bubble moves up along the left box edge; see Fig. 10. During the 
earliest stages of growth, the amplitudes of the bubble and spike displacements follow 
linear theory [20], but nonlinear effects quickly take over with the spike growing 
significantly more rapidly than the bubble. 

To check the sensitivity of the Padvection algorithm used in SOLA-VOF this 
problem was repeated with F advective fluxes determined entirely by the downstream 
or acceptor cell F values. This pure acceptor-cell method, which differs from the 
mixture of donor-acceptor fluxing used in the SOLA-VOF code, has been used in 
some previous work (see, e.g., Ref. [ 141). The consequences of using pure acceptor- 
cell fluxing are obvious from a comparison of Fig. 11 with Fig. 10. The acceptor-cell 
method develops large irregularities in the free surface, particularly where it is 
flowing parallel to itself. This does not occur in the SOLA-VOF method because it 
uses donor cell fluxing in such regions. 

” 
.:.. : 

.,,: 
.._.,,, 

;....._.....,,, 
1 ::::::I:::::; 

~ 

.- -; y; :; 

: 
:: .: 

I. 
‘., 

_ . ~.,. 

: 

-- _.\.,. 
2‘ >: ; : ; 

Q,. P 
.). 

.: 
:..::::::,:::: .~..........,., ,......_.I,,,, ~...-....,_.,,, :-\:;-;:::\,~, 

xc--,,: : t, I 

_i 

y$$ 

3 

FIG. 11. Repeat of calculation shown in Fig. 10 using pure acceptor cell advection for F. Note the 
considerably more irregular surface in the last frame. 
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FIG. 12. Schematic of MIT single-vent test apparatus. 
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FIG. 13. Velocity vectors and free surface configurations computed when air is forced through 
submerged vent pipe. 
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From this simple example, it is evident that the particular combination of 
donor-acceptor advection used in the VOF technique does an exceedingly good job. 
It is all the more remarkable because the algorithm uses a single pass through the 
mesh with relatively few calculations required for the flux at each cell boundary. 

E. A Reactor Safety Application 

Many boiling water reactors use a large pool of water to condense stream should a 
major steam leak occur. In some designs, steam would be forced into the pool 
through long vertical pipes extending several pipe diameters below the surface of the 
pool. Before steam enters the pool, however, air initially in the pipes must be pushed 
out. The ejection of this noncondensable air forms large bubbles in the pool and 
displaces the pool surface upward. Safety considerations require an understanding of 
the hydrodynamic forces generated during this process. For this purpose, several 
small-scale experimental programs have been conducted and several groups have 
attempted supporting theoretical analysis. 

A cross section of a single-pipe apparatus used at the Massachusetts Institute of 
Technology [2 1 ] is shown in Fig. 12. It consists of a cylindrical vessel approximately 
half filled with water and with an axisymmetric pipe extending down into the pool 
from above. At the beginning of a test, a valve is opened at the top end of the central 
pipe exposing it to a constant pressure plenum. Gas in the plenum flows through an 
orifice in the pipe and then into the lower pressure cylindrical tank by displacing 
water initially in the pipe. 

To model this test apparatus with the SOLA-VOF code, it is necessary to 
supplement the code with calculations for the gas pressure in the pipe and for the 
pressure in the space above the pool surface. These pressures are then used as free 
surface boundary pressures. A sequence of calculated results illustrating the fluid 
dynamics associated with the air clearing process are contained in Fig. 13. The free 
boundaries obviously undergo severe distortion, but the SOLA-VOF algorithm has no 

FIG. 14. Comparison of calculated and measured pressure history on floor of pool chamber. 
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difficulty in following the fluid motion. Pressures measured at the center of the floor 
are compared with the corresponding calculated pressures in Fig. 14. The agreement 
is reasonably good, except for some of the details associated with the initial pressure 
spike. There is some experimental evidence that the higher first spike and subsequent 
small second spike are results of elastic flexibility in the apparatus, which was not 
included in the calculation. Similar results have also been obtained for many other 
test conditions and for other measured quantities [22]. Since these results have been 
reported in detail in the quoted references, they are not reproduced here. 
Neverthesless, these results serve to further validate the SOLA-VOF code as a 
powerful and useful research tool. 

VI SUMMARY 

The volume of fluid (VOF) technique has been presented as a simple and efficient 
means for numerically treating free boundaries embedded in a calculational mesh of 
Eulerian or Arbitrary Lagrangian-Eulerian cells. It is particularly useful because it 
uses a minimum of stored information, treats intersecting free boundaries 
automatically, and can be readily extended to three-dimensional calculations. 

The VOF technique was described in detail as it has been used to follow free 
surfaces in an incompressible hydrodynamics code. Sample calculations with the new 
code, SOLA-VOF, show that it works extremely well for a wide range of complicated 
problems. 
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