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a b s t r a c t

This paper presents the recent development on the nonlinear directional wave generation process in a
3D Numerical Wave Tank (NWT). The NWT is based on a nonlinear model using the High-Order Spectral
(HOS) method, which exhibits high level of accuracy as well as efficiency properties provided by a Fast
Fourier Transform (FFT) solution. The wavemaker modeling appears to be a key point in the simulation
and it is carefully detailed. Different levels of approximation of the wave generation (up to third-order
in nonlinearity) are studied. The properties of the numerical scheme in terms of convergence, stability
and accuracy are discussed. This NWT features all the characteristics of the real wave tank (directional
wavemaker, absorbing zone, perfectly reflective side walls). Furthermore, several validation results and
practical applications where numerical simulations are successfully compared to experiments on 2D and
3D wave fields are presented.

© 2012 Elsevier Masson SAS. All rights reserved.
1. Introduction

The safety at sea of ships and structures has always been a
continuous concern of the marine hydrodynamics community.
Human safety on board, environmental issues or integrity of freight
and ship are the main societal concerns one has to take care of
when dealing with ocean environment. These structures operate
in complex nonlinear directional sea states including possible
extreme events. The accurate description of these wave fields
appears to be an essential need. For instance, during the design
process of a ship or a marine structure, one has to describe
the encountered wave patterns for fatigue studies and also to
determine the designwave. Furthermore, during operations at sea,
it is also essential in terms of safety or to optimize the working
loads (e.g. oil platforms have to be stopped in rough conditions
with corresponding losses . . . ). Consequently, the analysis of these
sea states is a major concern for marine engineering and also for
a better understanding of the physics of ocean waves (e.g. freak
waves). However, the study of such complexwave fields is still very
challenging either in an experimental or numerical approach.

New experimental facilities such as wave tanks have appeared
in recent decades to facilitate the understanding of wave induced
forces and their consequences. First, the wave fields generated
in such basins can be accurately controlled and most of the
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characteristics of complex sea patterns can be reproduced. Second,
studies on small scale models are less expensive than full scale
trials, which are really difficult to set up (no control of the wave
field that has to be measured for instance). This way, a wide range
of experimental tests are available, from long time sea evolutions
for the fatigue concern to extreme event interaction for design.
Consequently, the Hydrodynamics, Energetics & Atmospheric
Environment Lab. (LHEEA) of École Centrale de Nantes (ECN) built
such awave tank of size 50×30×5m,which is equippedwith a 48
independent flaps wavemaker and an absorbing beach, as shown
in Fig. 1.

At the same time, numericalmodels have been developed in the
recent decades thanks to the progress of computational facilities.
Many numerical tools known as Numerical Wave Tanks (NWTs)
have been developed for the study of gravity waves and their
propagation in a bounded domain. These constitute reliable tools
to assist the set-up and analysis of experimental tests provided that
they are able to accurately reproduce the 3D realistic sea patterns
generated in physical wave tanks.

Different levels of approximation exist, but up until now
still quite few 3D nonlinear NWTs have been developed. The
study of water wave propagation without any structures can
be done with the hypothesis that the fluid is non-viscous
and if one furthermore assumes no wave-breaking the flow is
also irrotational. Potential flow theory is therefore a correct
representation of the physical phenomenon. Although attempts
have been made with viscous flow formulation (for instance
see [1]), the potential theory remains the best compromise for
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Fig. 1. ECN wave tank, 50 × 30 × 5 m.

the numerical simulation of severe sea conditions over long-time
ranges. Indeed, viscous solvers are too dissipative as well as too
time consuming, making them unusable in the matter of interest
here. Different potentialmodels have been developed: for example
a finite element method is derived by [2] (see [3] or [4] for
latest developments). In this framework, simulation tools based
on Boundary Element Method (BEM) have also been elaborated
allowing the simulation of overturning waves. For instance, the
latest developments with High-Order BEM coupled with Fast
Multipole Algorithm are applied on rogue waves generation by
directional focusing in [5]. However the practical applicability is
limited by the computational costs for large 3D cases where fine
grids are required for the solution of a wide range of wavelengths.
Fast and accurate numerical solution is required and is achieved
with spectral methods, by means of Fast Fourier Transforms
(FFTs). A second-order NWT based on a spectral method has been
previously developed at ECN, namely SWEET (standing for Spectral
Wave Evolution in the Ecn Tank), see [6,7]. Other methods based
on spectral expansions have also shown interesting results in
bounded domains (see e.g. [8]). A more detailed review on NWTs
can be found in [9].

The SWEET model [6,7] is based on a spectral formulation.
This NWT models all features of a real basin (propagation
in a bounded domain, generation with a wavemaker) with
the problem formulated at second-order in wave steepness
and wavemaker excursion respectively. It has been extensively
validated on several 2D and 3D cases and exhibits high accuracy
and computational efficiency in its validity domain. The fully
second-order formulation (expansion in perturbation series) limits
the possible simulated steepness. The next step is thus to extend
to a fully-nonlinear model this previous work. This is achieved
using the High-Order Spectral (HOS) model. The initially proposed
HOS method is limited to unbounded domains, modeled with
periodic conditions applied on the sides of the numerical domain
(see the original work of [10,11]). It therefore allows the study of
open-sea evolutions once an initial sea-state has been adequately
defined, the definition of this initial state being not obvious
(see [12]). Moreover, in this initial HOS formulation, no wave
generation is possible, making difficult experimental validations.
Actually, sea evolutions reproduced in wave tanks present the
additional difficulties of wall and beach reflections, generation of
spurious free waves, and of starting from the rest. Nonetheless,
recent developments have extended themethod application range,
allowing the fully-nonlinear spectral modeling of the propagation
inside a wave tank. The SWEET model is thus enhanced, leading
to the HOST (standing for HOS Tank) one, see [13]. In this HOST
model, fully-nonlinear free-surface conditions have been taken
into account (instead of the second-order one in SWEET) with the
wavemaker still modeled at second-order. The current publication
presents the latest developments of the HOST model, leading to a
wavemaker modeled up to third-order, still coupled to the fully-
nonlinear solution of the free surface conditions.

The present paper is divided as follows. The first part deals with
the formulation of the problem in the general context of potential
flow theory. The different boundary conditions are presented as
well as the main characteristics of the NWT: presence of a wave-
generator associated with an absorbing beach.

The second part details the numerical model. First is reported
on the wavemaker modeling and particularly the improvement of
the first and second-order model described in [13], which leads
to the new expansion to a third-order wave generation. Then, the
HOS method allowing the fully-nonlinear solution of free-surface
boundary conditions is detailed. The resulting NWT characteristics
in terms of efficiency and accuracy are discussed.

The third part deals with the first validation results at low
steepness. Experiments have been conducted in the ECN wave
basin and compared to the numerical simulations. Firstly, long
time 2D irregular waves simulations are performed. The excellent
agreement with experiments assess the accuracy of our NWT
(wavemaker model, propagation and absorption) as well as the
improvements compared to the second-order model SWEET. Then,
the case of a 3D focused wave packet is studied. The successful
comparison to experiments of this complex 3D wave pattern
indicates the accuracy, efficiency and abilities of our model.

Eventually, different validations/applications atmoderate steep-
ness are presented in the last part. The case of a 2D regular wave
field is analyzed with comparisons to experiments conducted in
the ECN wave tank. The accuracy and efficiency is pointed out
as well as the improvement obtained with enhanced wavemaker
modeling. The differences between the different levels of approx-
imation in the wavemaker modeling are analyzed. Then, the case
of a 2D focused wave packet, embedded in an irregular wave field
points out the possible incidence of wavemaker nonlinearities.
Pressure calculations inside the fluid domain are also provided
during this comparison.

2. Formulation

Weconsider a 3D rectangularwave tankwithhorizontal dimen-
sion Lx × Ly and finite depth h, filled with an homogeneous, in-
compressible and inviscid fluid. We choose a Cartesian coordinate
systemwith the originO located at one corner of the domainD. The
section x = 0 corresponds to the wavemaker rest position, while
the sections x = Lx, y = 0 and y = Ly are perfectly reflective walls
(see Fig. 2) and z = 0 is the fluid surface at rest. The notation x
stands for the horizontal (x, y) vector.

The wave-induced motion of the fluid, initially at rest, is
irrotational. Then, under these assumptions, the flow velocity V =∇φ(x, z, t) derives from a velocity potential φ with ∇ standing for
the 3D gradient. The continuity equation div V = 0 is traduced for
φ as the Laplace equation 1φ = 0 in the fluid domain. We also
assume that the waves are non-breaking and we describe the free
surface elevation by a single-valued function η(x, t).

2.1. Boundary conditions

The wave tank shown in Fig. 2 contains different fixed solid
boundaries which are modeled with a no-flow condition ∇φ · n =

0 where n is the vector normal to the boundary. The last solid
boundary (x = 0 section at rest) corresponds to the wavemaker,
which is treated separately (see Section 2.2). Note that the wall
x = Lx opposite to the wavemaker is equipped with an absorbing
beach whose presence is taken into account in the simulation (see
Section 2.3).
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Fig. 2. Wave tank scheme with its coordinate system.

Fig. 3. Vertical geometry of piston (left) and hinged-flap (right) wavemaker.

The impermeability and the pressure continuity (surface ten-
sion is neglected) at the free surface give the kinematic and dy-
namic free surface boundary conditions. Following [14], these
boundary conditions can be written in terms of surface quantities,
namely the free-surface elevation η(x, t) and the surface potential
φs(x, t) = φ(x, z = η, t)

∂tη =

1 + |∇η|2


∂zφ − ∇φs

· ∇η (1)

∂tφ
s
= −gη −

1
2

∇φs
2 +

1
2


1 + |∇η|2


(∂zφ)

2 (2)

both expressed on the free surface location z = η(x, t). The oper-
ator ∇ stands for the horizontal gradient


∂x, ∂y


with ∂x the par-

tial derivative with respect to x. This way, the only quantity that
is not explicitly defined on the free surface is the vertical velocity
W = ∂zφ|z=η , which will be evaluated thanks to the order con-
sistent High-Order Spectral scheme of [10]. The HOS approach is
detailed in Section 3.2.

2.2. Wavemaker

Following [6], the motion of the wavemaker X(y, z, t) is
decomposed as the product X(y, z, t) = fv(z)X(y, t) where fv
is a function describing the vertical geometry. Fig. 3 shows the
different types of wavemaker, piston and hinged-flap that are
modeled. These are the most common wave generators used in
experiments. We assume that the wavemaker is continuous in the
transverse direction (i.e. the tiny gaps between flaps are neglected).
The wavemaker condition is expressed as a no-flow condition

∂tX = ∂xφ − (∇vX) · (∇vφ) on x = X(y, z, t) (3)

with ∇v =

∂y, ∂z


the vertical gradient.

At last, note that a time ramp is superimposed to the physical
wavemaker motion in order to reduce both the mechanical load
and the excitation of transient long modes in the basin. This time
ramp is reproduced in the numerical model as it prevents time
discontinuities and helps the time stepping process. In the ECN
physical wave tank, this ramp is prescribed linear and of duration
3 s. The efficiency of this ramp in the physical wave tank and NWT
is discussed in [7].

The wavemaker condition Eq. (3) is derived at different levels
of approximation. The previous study at first and second-order
presented in [13] is extended at third-order in the present paper.
This improvement in the nonlinear wave generation is presented
in details in Section 3.1.

2.3. Absorbing zone

An absorbing device such as a beach is generally added on the
wall opposite to the wavemaker to prevent reflection on this wall
and ensure a correct wave field in the test zone. To reproduce these
features in the NWT we include, following [15], an absorbing zone
described by a local modification of pressure P = ρν(x)∇φ · n at
the free surface,withρ the fluid density (see [6,7] formore details).

The function ν(x) is non-zero where absorption is required,
i.e. close to the wall opposite to the wavemaker. It also needs
to be smooth to avoid spurious reflections at discontinuities. We
found out that a third-order polynomial on a compact support
satisfying ν = 0 at the beginning of the numerical beach and
∂xν = 0 at both extremities is the best choice. This function has
been experimentally calibrated to reproduce the ECN absorbing
zone and could be adjusted to fit any absorbing zone (see [7]).

3. Numerical model

In the following, all quantities are expressed innon-dimensional
form with respect to space, time and mass scales chosen respec-
tively as the depth h,

√
h/g and ρh3 where g is the gravity accel-

eration and ρ the density of the fluid.

3.1. Wavemaker modeling

Thewavemakermodeling has been explained in [13] at first and
second-order. This modeling is based on the approach developed
for the second-order spectralmodel SWEET in [6].We refer to those
two papers for more details on the procedure. We recall here the
key points and we present the new expansion to the third-order
wave generation.

3.1.1. Additional potential
In order to model the wave generation by a wavemaker, the

concept of additional potential is introduced, following [16]. We
therefore separate the potential φ solution of the total problem
into two components φ = φspec +φadd where φspec is the potential
describing the wave evolution in the fixed-geometry tank with its
free surface (i.e. a homogeneous Neumann boundary condition on
the wall x = 0), and φadd is the additional potential accounting for
the wavemaker (i.e. satisfying the boundary condition Eq. (3)). The
free-surface boundary conditions (Eqs. (1) and (2)) are re-written
with φadd acting as a forcing term
∂tη =


1 + |∇η|2


W − ∇


φs

+ φadd

· ∇η + ∂zφadd

∂tφ
s
= −η −

1
2

∇φs
2 +

1
2


1 + |∇η|2


W 2

− ∇φs
· ∇φadd −

1
2

∇φadd
2 − ∂tφadd − ν∂tη

(4)

on z = η(x, t) where φs and the vertical velocity W are now
defined with respect to φspec only.

The original problem (generation and propagation of waves) is
now decomposed into two subproblems with governing equations
and boundary conditions reminded hereafter. First we need to find
the additional potential that satisfies the wavemaker boundary
condition Eq. (3) and no-flow conditions (∂nφ = 0 with n defining
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φadd ⇒


1φadd = 0 inside D
∂nφadd = 0 on x = Lx; y = 0, Ly; z = −1
∂xφadd + ∇vX · ∇vφadd = ∂tX∂xφspec − ∇vX .∇vφspec on x = X(y, z, t)

φspec ⇒


1φspec = 0 inside D
∂nφspec = 0 on x = 0, Lx; y = 0, Ly; z = −1
Modified free surface boundary condition: Eq. (4) on z = η(x, t).

Box I.
local normal) on other boundaries. Then, we can use the free sur-
face boundary conditions (4) to obtain the remaining unknowns,
that is the second potential φspec (or equivalently φs) and η. This
second stepwill be presented in details in Section 3.2. See the equa-
tions given in Box I.

The velocity potential φ solution of the total problem is the sum
of those two potentials (φ = φspec + φadd). Therefore, it satisfies
Laplace equation inside D as well as all boundary conditions.

Thus, the first challenge is to solve the additional problem,
i.e. to determine φadd in an efficient way. We extend here the
approach presented by [13] to third-order. This approach is itself
based on a NWT called SWEET developed by [6,7], which consists
in a perturbation series at second-order. In this NWT the total
problem, generation and propagation, is expanded in perturbation
series up to second-order and not only the generation problem as
in the present nonlinear HOST model. The idea is then to combine
this SWEET model to the HOST formulation to have a new model
featuring: (i) the HOST formulation, i.e. fully-nonlinear solution of
free-surface boundary conditions and (ii) a wavemaker condition
expanded up to the second or even third-order as presented
in this paper. Thus, we retain the attractiveness of the HOST
nonlinear formulation while adding an independent higher-order
wave generation, which improves the accuracy of the complete
NWT.

In this first step, both φadd and φspec are expanded in perturba-
tion series. In [13], we restricted the method in [6] to the succes-
sive computation of φ(1)add, φ

(1)
spec and φ

(2)
add. Note that (i) indicates the

ith-order in perturbation series expansion of the corresponding
variable and that at each order φ(i) = φ

(i)
add + φ

(i)
spec. For complete-

ness, one reminds governing equation and boundary conditions for
the problem expanded in perturbation series (see [6] for details).

1φ(i) = 0 inside D
∂nφ

(i)
= 0 on x = Lx; y = 0, Ly; z = −1

∂xφ
(i)

− ∂tX (i) = Ai on x = 0
∂tη

(i)
− ∂zφ

(i)
= Bi on z = 0

∂tφ
(i)

+ η(i) + ν∂zφ
(i)

= Ci on z = 0.

At each order the decomposition φ(i) = φ
(i)
add + φ

(i)
spec is used for

solution of the complete problem (generation and propagation).
Same process than previously described in this paragraph for
the nonlinear problem is used. Additional problem satisfies the
wavemaker boundary condition and no-flow conditions on other
solid boundaries while φ(i)spec takes care of free surface boundary
conditions. First-order terms (i = 1) read

A1 = 0, B1 = 0, C1 = 0.

At second-order (i = 2)

A2 = −X (1)∂xxφ(1) + ∇vX (1).∇vφ
(1)

B2 = −η(1)∂tzφ
(1)

−
1
2

∇̃φ(1)2 − ν

η(1)∂zzφ

(1)
− ∇η(1).∇φ(1)


C2 = η(1)∂zzφ

(1)
− ∇η(1).∇φ(1).

Each order is solved successively up to the desired order of
nonlinearity for wave generation. We are then able to evaluate
O

Fig. 4. Extended domain for additional problem solution.

the additional forcing terms in (4) using either a linear potential
φadd = φ

(1)
add (modelHOST-wm1) or a second-order potentialφadd =

φ
(1)
add + φ

(2)
add (model HOST-wm2). Note that φ(1)spec was only solved

to evaluate φ(2)add afterward. The nonlinear solution is then obtained
directly from (4) andwemake no use of the solution φ(1)spec and φ

(2)
spec

of the second-order SWEET model in that second step.

3.1.2. Third-order problem HOST-wm3
Wedescribe here the improvement of thewavemakermodeling

to third-order wave generation. The wavemaker boundary condi-
tion Eq. (3) at third-order is written on x = 0 leading to

A3 = ∂xφ
(3)
add − ∂tX (3)

= −X (2)∂xxφ(1) − X (1)∂xxφ(2) +
X (1)2

2
∂xxxφ

(1)

+ ∂yφ
(2)∂yX (1) + ∂yφ

(1)∂yX (2) + X (1)∂yxφ(1)∂yX (1)

+ ∂zφ
(2)∂zX (1) + ∂zφ

(1)∂
(2)
X + X (1)∂zxφ(1)∂zX (1). (5)

We choose to use a spectral solution for it, which enables us to use
FFTs in the rectangular domain. As seen in [6], this implies to define
a vertically extended domain Dadd for solution of the additional
problem. This domain is composed of
• the initial domain D extending from z = −1 to z = 0,
• the symmetrical of D with respect to z = 0 plan, further

translated upwards between z = hadd − 1 and z = hadd,
• a matching surface between the two previous rectangular

boxes, from z = 0 to z = hadd − 1 designed to smoothly close
the domain.
Note that the wavemaker motion between z = hadd − 1 and

z = hadd is the opposite of the one from z = −1 to z = 0, in
order to keep the domain volume constant when the wavemaker
is moving. The size of the additional domain Dadd is usually chosen
such as hadd = 3. An example of extendeddomain is given on Fig. 4.

In this extended domain, we expand the additional potential
φadd as

φadd(x, z, t) =

Ny
n=0

Nz
p=0

Bnp(t)χnp(x, z) in Dadd (6)
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Fig. 5. Solution algorithm for model HOST-wm3.
with the spectral basis functions

χnp(x, z) = cos

kyny


cos


kzp(z + 1)

 cosh

knp(Lx − x)


cosh


knpLx

 (7)

with kyn = nπ/Ly, kzp = pπ/(hadd + 1) and knp =


(kyn)2 + (kzp)2.

As shown in Eq. (5), the solution of the third-order problem
requires the knowledge of the total potential (φ = φspec +

φadd) at lower orders. We need to determine φ(i)spec for i = 1, 2;
this is achieved by means of the second-order model SWEET. At
the same time, note that the wavemaker motion X is explicitly
known. The proposed expansion in perturbation series X (i) is only
useful to perform wavemaker corrections (for instance free waves
corrections as seen in [17]).

The aim of the following section is to explain the process
to obtain the time dependent amplitudes Bnp(t). We focus our
attention on the more elaborated third-order scheme named
HOST-wm3 although simpler ones (HOST-wm1 and HOST-wm2)
were also developed [13].

3.1.3. Numerical algorithm
Eq. (4) involves the time derivative of φadd. Instead of using

backward finite difference to estimate ∂tφadd, we prefer solving
directly for the time derivative ∂tφadd and obtaining φadd bymeans
of the same time-marching scheme than that for η and φs.

The solution algorithm is schematized on Fig. 5 for the HOST-
wm3 model. It is divided into two main parts. The first one deals
with the solution of the wave generation problem in the extended
domain Dadd and may be described as follows

• The first-order additional potential φ(1)add is time-marched after
its derivative is evaluated from the linear wavemaker condition
∂xφ

(1)
add = ∂tX (1) on x = 0.

• This allows the solution of the first-order free surface boundary
conditions and thus the time-marching of η(1) and φ(1)spec.

• The second-order additional potential φ(2)add is time-marched
after its derivative is evaluated from the second-order wave-
maker condition

∂xφ
(2)
add = ∂tX (2) − X (1)∂xxφ(1) + ∂yφ

(1)∂yX (1) + ∂zφ
(1)∂zX (1)

on x = 0.
• This allows the solution of the second-order free surface
boundary conditions and thus the time-marching of η(2) and
φ
(2)
spec.

• The third-order additional potential φ(3)add is time-marched after
its derivative is evaluated from the third-order wavemaker
condition

∂xφ
(3)
add = ∂tX (3) − X (2)∂xxφ(1) − X (1)∂xxφ(2)

+
X (1)2

2
∂xxxφ

(1)
+ ∂yφ

(2)∂yX (1) + ∂yφ
(1)∂yX (2)

+ X (1)∂yxφ(1)∂yX (1) + ∂zφ
(2)∂zX (1)

+ ∂zφ
(1)∂

(2)
X + X (1)∂zxφ(1)∂zX (1). (8)

• The additional forcing terms in Eq. (4) assembled from φ
(1)
add,

φ
(2)
add and φ(3)add.

Note that the first step is the linear wave generation used in HOST-
wm1 while the first three steps correspond to the second-order
wave generation in HOST-wm2.

In terms of complexity of solution, one can compare the
HOST-wm3 formulation with the previous HOST-wm1 and HOST-
wm2 ones. Several additional variables have to be time-marched:
φ
(3)
add, η

(2) and φ(2)spec. They have to be added to the ones already
time marched in HOST-wm1: φ(1)add, η, φ

s and HOST-wm2: φ(2)add, η
(1),

φ
(1)
spec. This results in a more computationally expensive scheme in

both CPU time and memory requirement. However, this increase
appears to be acceptable compared to the global CPU time (see
Section 3.3.1) and regarding the corresponding improvements in
the solution as shown in Sections 4 and 5.

3.2. HOS method

As mentioned in Section 3.1.1, the second step of the solution
is to solve the free surface boundary conditions Eq. (4), with φadd
and ∂tφadd acting as forcing terms, in order to obtain the remaining
unknowns i.e. the potential φspec, or equivalently φs, and η. This
involves the estimation of the free surface vertical velocity W =

∂zφspec|z=η . The set of Eqs. (4) then provides the time derivatives
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of the unknowns η and φs, which are further used in a time-
marching 4th order Runge–Kutta Cash–Karp schemewith adaptive
step size [18].

Note that the perturbation technique used previously for the
wavemaker modeling is abandoned here. The HOS method indeed
solves for nonlinear elevation η and potential φs in Eqs. (4).

3.2.1. Principle
The HOSmethod is dedicated to the estimation ofW . It consists

in a double expansion of the potential φspec to solve the Dirichlet
problem φspec(z = η) = φs. First the potential φspec is expressed as
a truncated power series of components φ(m) form = 0 toM , each
component being of magnitude ηm. Second the potential taken at
the free surface is expanded in a Taylor series about themeanwater
level z = 0. Combining these two expansions give a triangular
set of Dirichlet problems for the components that can be solved
by means of a spectral method (see Section 3.2.2). Then, using the
same kind of double expansion to evaluate the vertical derivative
of the potential, we obtain the vertical velocity on the free surface
from the components φ(m).

The products involving ∇η and W in Eqs. (4) are evaluated
thanks to the order consistent formulation of [10]. One has to keep
in mind that the HOS scheme retains the fully-nonlinear feature of
the solution. Indeed, the evaluation ofW is an inner process, which
is not correlated to the nonlinear solution of the problem (free
surface boundary conditions are solved at the exact free surface
position). Several validations have been performed to assess the
accuracy and stability of the HOS scheme (see for instance the one
reported in [19]). It is interesting to note here that the Dirichlet
to Neumann Operator (DNO) models (see [20] or [21]) are strictly
equivalent to the HOS model as shown in [22]. Only the formalism
is different between these two methods. Furthermore, it has also
been shown [23] that the HOS method (with M = 3) is equivalent
to the formalism based on the expansion of the Hamiltonian used
by Zakharov [14].

3.2.2. Spectral solution
The choice of a spectral solution of the problem formulated

in the previous subsection is motivated by two main features
of this kind of method: (i) it allows the use of Fast Fourier
Transforms (FFTs) with an efficient computational cost growing as
N log2 N and (ii) it exhibits high accuracy with quick convergence
properties. The method is then intended to be more efficient than
BEM models, widely used as NWT (see Introduction). However,
it has to be reminded that our HOS formulation differs from this
original one. Typically, spectral methods work in open domain
(HOS e.g. [10], DNO e.g. [21] or mixed pseudo-spectral/integral
method of [24], . . . ) and are thus not adapted to treat the NWT
issue. The spectral solution of the NWT problem is notwidespread:
a previous model developed in our laboratory, SWEET [6,7] was
one of these. However, it was limited to second-order in wave
amplitude, a limitation, which is intended to be removed with this
new NWT model.

Then, the spectral expansions chosen to treat the problem
of a rectangular wave tank are discussed. One has to define
basis functions ψmn(x, z), which implicitly satisfies the boundary
conditions of the problem (withoutwavemaker, which is treated in
3.1). The potential satisfies no-flow conditions on the boundaries
x = 0 and x = Lx, on the side-walls y = 0 and y = Ly and on
the bottom z = −1 as well as the Laplace equation in the domain.
This gives the following basis functions, which correspond to the
natural eigenmodes of the wave tank

ψmn(x, z) = cos(kxmx) cos(k
y
ny)

cosh [kmn(z + 1)]
cosh [kmn]

(9)
with kxm = mπ/Lx, k
y
n = nπ/Ly and kmn =


(kxm)2 + (kyn)2. The

velocity potential is expanded on this basis

φspec(x, z, t) =

Nx
m=0

Ny
n=0

Amn(t)ψmn(x, z) in D. (10)

The velocity potential is fully determined by the knowledge of the
time-dependent coefficients Amn(t).

3.3. Efficiency and accuracy

One knows that spectral solution exhibits efficient solution
as well as quick convergence. This will be pointed out in next
paragraphs.

3.3.1. Efficiency and computational effort
As noted before, efforts have been done in order to retain a fully

spectral solution scheme (including the wave generation). This
allows the use of a FFT based solution scheme. Thus, computational
costwill grow asN log2 N withN the number ofmodes used (either
on the free surface or the wavemaker). Moreover, an improved
time-marching scheme, presented by [24], is used. Thanks to an
adequate change of variables, the nonlinear part of the system
of Eqs. (4) is solved as a problem in itself. The linear part of
the equations is solved analytically while the nonlinear part
is computed numerically. This provides great speed-up of our
numerical simulations as noted in [25] or [26] (total CPU time
divided by a factor up to 3 for a given accuracy).

In more detail, the CPU resources needed for 3D HOS calcula-
tions are the following with a partial dealiasing of order p and de-
noting by N = NxNy the number of free surface modes

THOSpartial = O


23 +


M2

2
+

7M
2

+ 2E

M − 1

p


+ 31


p + 1
2


N log2(N)


. (11)

On the other hand, the additional solution leads to an additional
CPU cost that reads

Tadd = O

αNyNz log2


NyNz


+ βN log2 [N] + γNNyNz


(12)

with α, β and γ number of products/FFTs needed for additional
solution/reconstruction. One can note that each operations have to
be accounted for, the total CPU time being an addition of different
process. To determine the different constants, this is necessary
to calculate each operations performed during the computation.
These are dependent of the order of approximation used in the
wavemaker modeling. Results of CPU times per time-step on a
2.4 GHz Opteron mono-processor are given on Fig. 6 for a typical
computation with HOS order M = 5 and partial dealiasing p = 3.
This figure also presents the theoretical CPU time = THOSpartial + Tadd
from Eqs. (11) and (12) with α = 9, β = 3, γ = 48.

The agreement between the CPU timeobtained in the numerical
simulation (curve HOST-wm1) and its approximation by Eqs. (11)
and (12) (curve Theoretical (wm1)) assess the accuracy of this eval-
uation. Furthermore, Fig. 6 indicates the increase in CPU timewhen
dealing with enhanced wavemaker models (HOST-wm2 and HOST-
wm3). The computational cost of these improvements is acceptable
in the range of applications studied and particularly regarding the
improvement of the results thanks to these expansions (see
Section 5). Thus, the computational cost is correctly approximated
by Eqs. (11) and (12) provided that the number of modes used is
sufficiently large.
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Fig. 6. Computational effort per time step function of number of modes N for first,
second and third wave generation.

3.3.2. Accuracy
To ensure the accuracy of the solution, one has to be aware

of the aliasing phenomenon, occurring in the products of two
quantities in the physical space. Specific attention has been paid
to treat this aliasing phenomenon correctly. Indeed, it appears
to be a key point in the quality of the solution. The dealiasing
is performed using the well known zero-padding approach (see
e.g. [27]). The spectral representation of a quantity is expanded
to larger modes, which are made equals to 0. Products are made
with these expanded quantities and are then transformed back on
the initial number of components/points. It has been chosen to
perform a complete dealiasing, i.e. products of order M expressed
with N modes/points are dealiased with an expansion on M+1

2 N
modes/points (the M + 1 halves rule). This enables the treatment
of the complete aliasing phenomenon (by contrast with e.g. the
approach in [11] where an expansion on only 2N points is always
used, even with high-order products).

We also introduce the partial dealiasing as a dealiasing of the
products of order p < M . This is applied within the HOS scheme
until orderM is reached. For instance, to dealiase a product of order
5 (η5) with p = 3 we will rewrite (η5 = η3 × η2) and perform the
dealiasing on η3 with an expansion on 2N modes (here p+1

2 = 2).
This allows to maintain reasonable CPU time and memory storage
as well as a good accuracy for large 3D computations. Thus, this
partial dealiasingwill be used in the following for 3D computations
with p = 3. Typically, other computations in this paper are
performedwith a complete dealiasing, unless specifically provided
otherwise. The influence of partial to complete dealiasing has been
widely investigated in [26].

The time-stepping accuracy is achieved thanks to the 4th order
Runge–Kutta Cash–Karp scheme with adaptive step size. This
scheme induces the definition of a tolerance (i.e. a level of accuracy)
on the time-marching. Time-steps are then chosen automatically
during the simulation according to this tolerance which is flexible
but usually fixed to 10−7 in the following.

A convergence analysis is proposed on a typical wave basin test
case. A 2D sea state defined by a Bretschneider spectrum (peak
wave length λp = 3m) is generated in a wave basin (50 m long,
5 m deep), and the surface elevation is recorded at one point in the
middle of the NWT, which is a node for each simulation. The error
ϵ is evaluated on the whole probe signal

ϵ =


t

ηprobe − ηrefprobe


t

ηrefprobe

 (13)

with ηprobe the elevation at the probe signal and ηrefprobe the probe
signal of the numerical reference, corresponding to the following
parameters (Nx = 2048,Nz = 512 vertical modes on the
wavemaker, and a HOS orderM = 10).

The results of the convergence test with respect to the number
ofmodes/nodes in the simulationsNx are reported on Fig. 7. Results
presented were performed with Nx,Nz = Nx/4,M = 8.
0

Fig. 7. Convergence of the results with respect to number of modes/points Nx .

Fig. 8. Irregular-wave elevation history: comparison of experimental and NWT
data for ϵc = 3%.

The observed convergence rate is about 2.1 and thus actually ≥

2 as theoretically expected. With this kind of wave field the global
error is less than 1% with only 128 modes/nodes in the horizontal
direction to describe the 50 m long wave basin (i.e. ≃8 modes
per wavelength). That is to say, the exhibited convergence order
as well as the fast solution (thanks to the use of FFTs) confirm
the great efficiency of our NWT model. This efficiency enables us
the crucial solution of shortest wavelengths in the NWT during
3D complex wave fields simulations. These waves are demanding
in terms of discretization and are reasonably accessible (in terms
of CPU time) only with very efficient numerical models. Remind
that the number of modes/nodes in the computational domain
depends on the wave length (for a given level of accuracy). Thus,
the number used in the paper hereafter would be different if the
wave conditions are changed.

4. Validations at low steepness

All experiments that are used in the following comparisons
are carried out in the ECN wave basin (50 × 30 × 5 m).
The geometry of the physical wavemaker is taken into account
in the NWT (flap with hinge 2.15 m above the bottom). The
experimental wavemaker motion serves as input for the NWT,
allowing straightforward comparisons between experiments and
numerical simulations.

We first propose two validations against experimental results,
which do not involve strong nonlinear effects near thewavemaker.
For this two cases, the three versions HOST-wm1 to HOST-wm3
provide elevation with only minor differences so we focus our
attention on the agreement between themodelHOST-wm3 and the
experiments. In depth comparisons between the three models are
presented in Section 5 when steeper wave fields are generated.

4.1. 2D irregular waves: long time simulations

The first validation intends to show the ability of the model
to reproduce long-time irregular wave fields in the basin. The
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irregular wave field is described by a Bretschneider spectrumwith
a peak period Tp = 2 s and a steepness εc = 3% (the steepness is
defined here as the ratio of the significant wave heightHs = 4

√
m0

to the wavelength at the peak frequency). The corresponding
wavemaker motion is obtained using linear wavemaker transfer
function TF = a/s which relates wavemaker stroke s to the
generated waves amplitude a (defined here from wave spectrum).

X(z, t) = Re


N
j=0

TFjajei(ωjt+ϕj)


fv(z) (14)

fv(z) defines the wavemaker vertical geometry (which also
characterize the transfer function used). ϕj is the phase of each
component j which is chosen randomly between 0 and 2π . This
spectrum has been divided into 1024 frequency components
equally spaced in the bandwidth [0; 2]Hz. This leads to a repeating
period of 512 s for the wavemaker motion. The wavemaker is
started at t = 0 s with a linear ramp applied during 3 s. The
wave elevation is recorded at a probe located 20 m away from the
wavemaker for more than 400 peak periods.

Fig. 8 compares the experimental and the HOS wave probe
record for the steepness εc = 3%. The HOS result is obtained with
theHOST-wm3model. The timewindow is focused on a large wave
group located at t = 760 s after the beginning of the experiments
(i.e. long-time propagation, 380 Tp).

For comparisons, the same simulation is performed with the
second-order NWT model named SWEET described in [6,7]. The
latter NWT exhibits a high level of accuracy for a lower steepness
εc = 1.5% even for the larger amplitude wave groups where the
nonlinear effects are more pronounced (not shown here, see [7]).
The probe elevation obtained with the SWEET NWT is also shown
on Fig. 8.

As shown in [7], the second-order NWT SWEET is able to
reproduce satisfactorily the major features of the wave field but
it fails when a large amplitude wave packet is concerned, as the
one between t = 760 and 765 s on Fig. 8. The second-order
model SWEET shows both a significant phase shift and an incorrect
estimation of the wave height around t = 763 s. This NWT does
not capture the nonlinear phase velocity of the different wave
components involved in the steepest wave packet.

The HOST NWT however shows a very good agreement with
the experimental data during the entire time range given in Fig. 8,
regardless of the local steepness. This kind of simulation shows
the efficiency of the NWT to correctly: (i) generate the wave field
(ii) propagate waves in the tank and (iii) model the physical wave
beach for a long period of time (380 peak periods). The same
absorbing zone is used in SWEET and HOST computations and its
calibration is detailed in [7]. The nonlinearities of order greater
than two in the propagation process are then of great influence
in this kind of computation. Then, their simulations are essential
when dealing with wave fields with moderate (and a fortiori large)
steepness. The significance of our nonlinear NWT is then clear and
particularly when simulations involves steep wave fields in the
wave flume.

4.2. 3D focused wave packet

The second validation deals with a 3D wave packet embed-
ded in an irregular directional wave field. The encompassing ir-
regular wave field is described by a modified two-parameters
Pierson–Moskowitz frequency spectrum with a coss θ directional
spreading. The experimental parameters are a 2 s peak period
(Tp = 1/fp), a 0.05m significant wave height (Hs) for the frequency
spectrum and s = 20 for the spreading.

S( f , θ) =
5H2

s

4fp


f
fp

5

e−
5
4


f
fp

4
coss θ. (15)

We adjust the phases ϕj of the wave components (256 in the
range f ∈ [0; 2] Hz and θ ∈ [−π;π ]) in order to obtain a focus
at xf = 24.6 m, yf = 14.3 m and tf = 70 s. Spatio-temporal
focusing imposes to generate each (directional) component (with
angle θj) so that all of them are in phase at the position (xf , yf ) at
(a) t = 51 s. (b) t = 58 s.

(c) t = 61 s. (d) t = 70 s.

Fig. 9. 3D views of the focusing event.
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Fig. 10. Experimental and numerical results on probes surrounding the 3D focusing point.
the time tf , i.e. ϕj = −

ωjtf − kj


xf cos θj + yf sin θj


. This phase

adjustment is based on linear dispersion relationship (to deduce
wave component celerity). Then, the linear transfer function is
used to deducewavemakermotion.When dealingwith directional
wave fields, Dalrymple method is used to control the wavemaker
instead of the more classical snake’s principle. This allows to
take into account the presence of reflective side walls in the
wavemaker motion. We refer to [28,7] for details about the
directional wavemaker theory as well as Dalrymple method. The
experiments are reproduced during 90 s with HOST-wm3 and
the following numerical settings: 257 × 17 and 17 × 17 modes
respectively on the free surface and wavemaker, HOS orderM = 5
and partial dealiasing p = 3. The total CPU time for this simulation
is around 7.5 h on a 2.4 GHz Opteron mono-processor.

Fig. 9 presents 3D views of the evolving wave field at four
different instants during the focusing process. On Fig. 9(a) the
wave pattern is the one of the irregular wave field generated
from the directional Pierson–Moskowitz spectrum. However, the
directional focusing process already started as, close to the
wavemaker position (x = 0 m) a long wave was just generated.
The typical shape of directional focusing wave fields (concentric
pattern with shorter waves generated ahead of longer ones) is
well observed at the consecutive instant (see Fig. 9(b) and (c)).
At t = 70 s, the directional focusing effectively occurs with a
high wave created in the middle of the wave basin, see Fig. 9(d).
This wave presents a moderate local steepness H/λ = 5%. Fig. 10
presents the wave probes signals from experiments and numerical
simulations. The layout of the wave gauges, known as truncated
pentagon, is also shown on this figure. This arrangement is widely
used for directional wave fields studies (e.g. [29]). The probe a is
located at the position of the focusing, x = 24.6 m, y = 14.3 m
and the other probes are regularly spaced on a circle of 1-m radius
around it.

The agreement between experiment and numerical simulation
is really good at the focusing point, and on the other probes signals.
The quadratic error appears to be less than 4% for all probes.
This indicates that the 3D shape of the focused event is correctly
reproduced as well as the surrounding troughs and crests. The
superposition of different wavelengths and different directions,
together with the large nonlinearities present when the wave is
focusing, are correctly included within the HOST model, which
is clearly able to model nonlinear effects in directional seas and
complex 3D sea state.

5. Validations at moderate steepness

The following validations are intended to show the potential
of the models HOST-wm1, HOST-wm2 and HOST-wm3. The case
of a 2D regular wave field is first studied with comparisons to
experiments conducted in the ECN wave tank. The error on the
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Fig. 11. Convergence on volume with respect to number of modes/points with HOST-wm1, ka = 0.2. Global view (top) and zoom on last 5 s (bottom).
free surface elevation as well as the volume conservation during
simulations are analyzed. The study of the return current within
the NWT is also carried on. This flow pattern is typical in bounded
domains and difficult to simulate. Then, the case of a 2D focused
wave packet, embedded in an irregular wave field points out the
possible incidence of wavemaker nonlinearities.

5.1. 2D regular waves

The test case is regular waves propagating along the main
direction of the wave basin with a moderate steepness ka = 0.2
and a wave period T = 1.83 s. The physical data consist of a single
wave probe record giving the free surface elevation at a distance
xp = 16.5 m from the wavemaker. The wave front arrives at the
probe at t = 13 s.

5.1.1. Volume conservation
Prior to compare the three models, we made sure that conver-

gence in terms of Fourier modes is correct. Fig. 11 shows the rel-
ative error on the volume for this regular wave field (ka = 0.2)
when the mesh is refined for the model HOST-wm1. Details on the
calculation of the volume are given in Appendix A. TheNWT clearly
converges toward a solution where the volume increases almost
linearly in time when the version HOST-wm1 is used. In all the fol-
lowing simulations, we made sure that the mesh convergence is
satisfied regarding the number of points in the horizontal direc-
tion as shown above but also in the vertical direction and in terms
of order M and dealiasing. The numerical simulations are there-
fore performed in 2D with Nx = 513 and Nz = 129 modes in
the x and z direction respectively and a HOS order M = 5 with
a complete dealiasing. Fig. 12 shows the evolution of the relative
error on the volume for the previous regular wave field (ka = 0.2)
and for the threewave generationmodels.We can observe that the
three models are characterized by an error, which is linear in time.
For the worst case (HOST-wm1) this is less than 1.3·10−3 after 30 s
of propagation. This error is highly reduced with the second-order
wave generationmodelHOST-wm2 (≃ 1·10−4) aswell as the third-
order oneHOST-wm3, which exhibits the lowest error at the end of
the simulation (≃ 2·10−5).
Fig. 12. Comparison between first, second and third-order generation on volume
error, ka = 0.2. Nx = 513,Nz = 65.

Fig. 13. Comparison between third-order wave generation and experiments for a
regular wave field, ka = 0.2.

5.1.2. Comparison with experiments
A thorough comparison between experiment and the three

HOST-wm(i) formulations presented previously is carried out
in order to identify the physical process described by each
formulation. Fig. 13 presents the wave probe signal in the physical
basin and in the NWTs; the three numerical models give results
that are significantly different this time, yet only the HOST-wm(3)
is shown on Fig. 13 for clarity. One can see a correct agreement
between experiment and simulation, during the transient wave
front as well as during the stationary state.
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To estimate the quality of the various models, we compute the
global error ϵ (cf. Eq. (13)) on the wave probe record between
experiment and numerical simulations. The HOST-wm(i) models
produce 13.8%, 7.0% and 6.2% respectively for i = 1, 2 and 3. The
solution is thus clearly improved with the enhanced wavemaker
modeling.

A more in-depth analysis of the differences between models is
presented below.

5.1.3. Differences between HOST-wm(1) and HOST-wm(2)models
In order to clearly identify the differences between the models

of generation, we chose to apply themethod used by [30] involving
crest and trough wave generation. They proposed to generate two
differentwave fields: (i) the initial focused event η and (ii) a second
focused ηπ with a π phase shift for each wave components, in
order to determine linear and nonlinear contributions occurring in
a wave focusing. The sum and difference elevations are evaluated
with

η+
=

1
2
(η(x, t)+ ηπ (x, t))

η−
=

1
2
(η(x, t)− ηπ (x, t)) .

To explain the meaning of these elevations, we can apply it for
instance to a regular wave described at second-order by

η(x, t) = a exp [i(kx − ωt)]

+
1
2
ka2 exp [2i(kx − ωt)] + O((ka)3).

We obtain in this case

η+
=

1
2
ka2 exp [2i(kx − ωt)] + O((ka)3)

η−
= a exp [i(kx − ωt)] + O((ka)3).

The sum elevation η+ thus provides the second-order whereas
the difference η− the first one. In the more general context of
a nonlinear elevation, which is not limited to second-order, the
sum and difference elevations correspond respectively to even and
odd nonlinear orders. They are evaluated with η and ηπ standing
now for fully-nonlinear elevations. Fig. 14 shows the difference
between the even and odd elevations obtained with the first and
second-order wave generation models.

The difference in sumelevationη+(wm2)−η+(wm1) identifies
clearly an oscillation at frequency 2ω appearing after ≃ 23 s
of propagation in the HOST-wm2 simulation. This 2ω wave
propagates at the half the group velocity of the target waves:
it corresponds to the spurious free wave, which is generated by
nonlinear effects near the wavemaker. These waves that are also
present in the physical wave basin, are reproduced numerically
only with the second-order wave generation model.

For difference elevation, η−(wm2) − η−(wm1) indicates
that the HOST-wm1 and HOST-wm2 models differ also by two
components: first a ω component arriving with the wave front at
t = 13 s, and later a 3ω component reaching the probe at t = 30 s.
To understand the existence of such waves one can have a look to
the free surface boundary conditions Eq. (4). In the case here of a
second-order wave generation, the additional potential is written
φadd = φ

(1)
add +φ

(2)
add and it gives the following terms in the dynamic

boundary condition

• ∂tφ
(2)
add is related to the free waves of pulsation 2ω propagating

with a group velocity half that of the ω waves.
• |∇̃φ

(1+2)
add |

2 gives a term |∇̃φ
(1)
add.∇̃φ

(2)
add| including ω and 3ω

components, which appear clearly in bottom part of Fig. 14.
• ∇φs

· ∇φ
(1+2)
add : results also in ω and 3ω components.
Fig. 14. Differences between first and second-order wave generation using even
(top) and odd (bottom) elevation for a regular wave field, ka = 0.2.

The ω component in η−(wm2) − η−(wm1) proves that third-
order effects such as the one mentioned above contribute to
the amplitude of the propagating wave field. The 3ω component
arrives later: it corresponds to a free wave also generated by
nonlinear effects near the wavemaker.

5.1.4. Differences between HOST-wm(2) and HOST-wm(3)models
Fig. 15 presents the difference of the odd and even elevations

between HOST-wm2 and HOST-wm3. A comparison of the latter
with Fig. 14 shows that the process of increasing the order of
the wave generation model is indeed converging, more or less
rapidly depending on the nature of the waves involved. One may
first observe that the amplitude of the difference between the odd
elevation is globally lower than in the previous HOST-wm1 and
HOST-wm2 case (bottom). This means that the other third terms
in Eq. (4) also significantly contribute to the total ω amplitude in
the wave field. Concerning the even elevation (top) we see that
themodelsHOST-wm2 andHOST-wm3 give the same results before
t = 23 s but not after. The second-order wave generation model
is able to reproduce the even nonlinearities before the spurious 2ω
wave field arrives but fails once the latter reaches the probe: in this
case, the third-order wave generation is required.

5.1.5. Return current
The well known Stokes drift describes a mass transport in the

waves direction. This will result, in confined domain such as a
wave basin, in the existence of a return current to compensate
for the Stokes drift. If we assume a constant velocity profile with
depth, the second-order theory of water waves gives the return
current (period averaged and averaged over the still water depth—
see e.g. [31,32])

Ur = −
1
2
A2ω

h
coth(kh). (16)

Fig. 16 presents, on the top part, the current estimated in the
simulations with the three methods of wave generation HOST-
wm1, HOST-wm2 and HOST-wm3. This current is measured at the
bottom of the wave basin (h = −5 m) where the wave flow
influence is negligible. The velocity calculation is performed at
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Fig. 15. Differences between second and third-order wave generation using even
(top) and odd (bottom) elevation for a regular wave field, ka = 0.2.

Fig. 16. Velocity on bottom during time: HOST-wm1, HOST-wm2, HOST-wm3 and
theoretical with ka = 0.2. Exact velocity (top) and mean value (bottom).

x = 7m and one can note that as shown in [33], the return current
is traveling with the wave front (at t = 10 s the wave field reaches
the location of the velocity probe). After thewave front, the second-
order current presents a mean value, the so-called ‘return current’,
and an oscillating part at twice the wave frequency. The mean
value is shown on the bottom part of Fig. 16. It appears that the
HOST-wm2 and HOST-wm3 computations are in good agreement
with this theoretical result (Eq. (16)), the error being drastically
reduced from first to second-order wave generation. The third-
order one is, as expected, the most accurate with very slight
discrepancy with the theory. Furthermore, this small difference
between numerical simulations and the ‘theoretical’ model could
maybe be explained by the approximation of second-order water
waves as well as a constant velocity profile with depth. However,
the discrepancies observed with the HOST-wm1 model are due
to the strong hypothesis of a first-order wavemaker and more
precisely, are mainly due to the volume drift observed previously.
Indeed, a change of global volume could be seen as a non-null
flow rate through a given water column and thus resulting in
a change of the return current (which ensure the global mass
conservation inside the wave basin). Thus, it appears that some
complex phenomena could only be correctly modeled with the
high-order (second or third) wave generation. The relevance of
the improved wavemaker modeling is clear. It is to be noted that
the interesting feature of the return current in a 3D wave basin
(i.e. with 3D wave sea patterns) can be easily analyzed with our
method.

5.2. Limitations

During the development of this enhanced wavemaker models,
we observed few limitations. Particularly, when one tries to
simulate the propagation of steep waves (ka = 0.3 and larger),
some problems occur during the solution with the HOST-wm3
model. Sawtooth instabilities appear in the additional solution,
which do not allow a correct simulation. As far as spectral methods
are concerned, this kind of instability may be typical of aliasing.
However all the products are evaluated using an alias-free scheme
(see Section 3.3.2) so the instability is more likely related to the
wave generation process (additional problem) rather than wave
propagation (HOS method).

To analyze the origin of such instabilities, one has to look
at the wavemaker boundary conditions at third-order Eq. (8).
This condition implies the computation of the third-order spatial
derivative of the first-order velocity potential ∂xxxφ(1) and the
second-order spatial derivative of the second-order velocity
potential ∂xxφ(2). These derivations are performed in the Fourier
domain and they could induce some stability problems: the
successive derivations increase the numerical errors, particularly
for larger modes (multiplication by k3 or k2). Indeed, the behavior
of Fourier components at large wavenumbers depends on the
regularity of the function. We may investigate separately the
additional potential φadd and the remaining component φspec.

To guarantee first the regularity of the additional potential at
the different orderswe have removed two sources of discontinuity.
As seen in Section 3.1 a matching surface is determined to build
the additional domainwhere the additional problem is solved. This
surface is chosenwith continuous derivatives up to the third-order
to ensure the regularity of the different derivatives further needed
in the numerical computation. Furthermore, a discontinuity ofφ(1)add
appears at the bottom of the flap (rotation axis) in the case of
a hinged-flap wavemaker (typically used in wave basins). This
singularity is removed smoothing locally around the hinge the
vertical geometry of the flap, in order to obtain an additional
potential whose derivatives are continuous up to the third-order.
This is obtained thanks to a 6th order polynomial in a small
smoothing zone around the hinge. Once this is done, the Fourier
components of φ(1)add decrease faster than k−4, which ensures a
correct spatial derivation. It also follows that the second-order
additional potential is twice derivable.

The second step is to study the second component of the
potential, i.e. the potential φspec. Particularly, the wavemaking
process involves ∂xxxφ

(1)
spec as well as ∂xxφ

(2)
spec at the position of the

wavemaker (x = 0). The first term involving the third derivative
in x of a quantity will be equal to 0: we recall that the spectral
expansions of the different quantities (including φ(i)spec) involve
cosinus series, Eqs. (9) and (10). Studying the behavior of ∂xxφ

(2)
spec

informs us that the decrease of its Fourier series components is
around k−2 for the steep cases, which induce the problematic
sawtooth instabilities. Thus, for these wave fields, the regularity
of this function is not sufficient to provide with good accuracy
its second-order spatial derivative (multiplication by k2) and
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consequently the third-order wave generation is not resolved
properly. This feature is mainly due to the way φ(2)spec is obtained
during the SWEET solution process. Indeed, its computation
involve several derivatives of the first-order quantities, which
results in a lower convergence rate for this quantity. To overcome
this difficulty, one can think about applying some kind of filtering
for instance but up until now, no satisfactory scheme have been
obtained for the treatment of very steep wave fields with HOST-
wm3model.

5.3. Focused waves

The next step in validation is to consider a transient wave field
with a full range of frequencies and not only a single frequency
as for the regular wave previously studied. We test the NWT for
the generation of a focused wave packet where the nonlinear
effects consist of more complex wave–wave interactions. A set of
experiments has been conducted in the ECN wave tank with the
following superposition of 2 wave fields (2D):

• Irregular wave field defined by a Bretschneider spectrum Hs =

α 0.5 m and Tp = 3.13 s.
• Focused wave packed defined by a Bretschneider spectrum

Hs = α 0.075 m and Tp = 3.13 s with phases adjusted to
produce a focusing at the specified position.

As seen previously, wavemaker motion is obtained for each
wave field from Eq. (14) before the superposition. 512 wave
components are used to describe each spectrum in the range f ∈

[0; 2] Hz. Random phases (between 0 and 2π ) are used for the
first one while they are adjusted to have focusing at a distance
xf = 16.1 m from the wavemaker at tf = 17 s for the second one.
The above spectra parameters have been tuned experimentally to
provide a wave field suitable to study the survivability of a wave
energy converter device. The case α = 1 is the steepest wave
field we could possibly generate without having wave breaking
between thewavemaker and the probes location.With this set-up,
the wave breaks just after the wave probes.

Thenumerical simulations are performedwithNx = 513modes
on the free surface and Nz = 129 modes on the wavemaker. The
HOS order is fixed to M = 5 with a complete dealiasing and the
duration of the simulation is t = 30 s real time (when no wave-
breaking occur) for a total CPU time of around 450 s on a 2.4 GHz
Opteron mono-processor (HOST-wm3).

As noted in Section 5.2, for highly nonlinear sea states some
stability problems could occur. This is the case for the steepest
wave fields described above. Then, we put our interest here only
on the cases α = [0.5; 0.6; 0.7] for the comparisons between the
different HOST-wm(i) models. The cases with α = [0.8; 0.9; 1.0]
have already been successfully simulated with HOST-wm1 and
HOST-wm2models (see [13]). Note that the simulation of irregular
seas possibly include highly nonlinear waves. Indeed, those events
are usually localized in space and time in this configuration.
Consequently, numerical instabilities observedwith regular waves
are greatly reduced, allowing simulation of those complex
nonlinear wave fields.

5.3.1. Surface elevation
In order to assess the higher accuracy of the HOST-wm3

model, the 3 models of generation are used on the cases α =

[0.5; 0.6; 0.7] and compared to the experiments. The simulations
are 30 s long and no wave breaking occurs here. Fig. 17 presents
the comparison between experimental results and numerical
simulations with the three models of generation for α = 0.7.
One can see that experiments and numerical simulations are in
good agreement for the three models (top). The bottom part of
Fig. 17 presents a closer view of the focused event and it reveals
Fig. 17. Comparison between first, second and third-order generation and
experiments (α = 0.7).

Table 1
Global error ϵ with respect to wavemaker modeling for different choices of α.

HOST-wm1 (%) HOST-wm2 (%) HOST-wm3 (%)

α = 0.5 13.7 9.8 8.2
α = 0.6 14.6 10.1 7.4
α = 0.7 18.8 13.7 9.5

that the HOST-wm1model fails to accurately reproduce this event,
more specifically the trough preceding the focused crest and this
crest itself. The higher-order generation models allows to correct
the errors observed with the linear one. In order to quantify the
improvement of the higher-order models, Table 1 presents the
global error on thewave elevation (Eq. (13)) evaluated over the 30 s
simulation with the three models of wave generation. The cases
α = [0.5; 0.6; 0.7] are listed. The first point to note is that the
error in Table 1 increases with the wave amplitude α, that is to
say, with nonlinearities. We can also see that both HOST-wm2 and
HOST-wm3models present real improvements compared to HOST-
wm1. The HOST-wm3 model is in this study still, as expected, the
most accurate model.

As most of the nonlinear effects are correctly solved by the
HOST-wm2 model and as this model does not suffer the stability
problems encountered with the HOST-wm3, it seems to be a good
compromise between accuracy/stability and solution efficiency.

5.3.2. Pressure calculations
In this section, we focus our attention on the calculation of the

pressure under the free surface. The experimental set up of the
focused wave presented before also provide pressure gauges. The
case of interest here is α = 0.7 and the numerical simulations are
performed with the HOST-wm3model.

As regards the numerical evaluation of the pressure inside the
fluid domain, a specific technique is implemented in our model;
it is adapted from a previous work by [34] who developed the so-
calledH andH2 operators in a DNOmethod (which is equivalent in
its accelerated version to theHOS scheme). Further details on these
underwater velocity/pressure calculation can be found in [25]
where it has especially been demonstrated that: the best way
of calculating the underwater kinematics (and thus the pressure)
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Fig. 18. Comparison of pressure under the free surface between numerical
simulations HOST-wm3 and experiments.

is to take as initial value the corresponding velocity at the free
surface and not the surface velocity potential. Furthermore, the H2
operator has been found substantially more accurate than the H
one with steep waves.

The comparisons are achieved on the pressure gauges signals
located at the focusing position and at different depths (z =

−0.30,−0.20, −0.10 et 0.00 m). Results are presented on Fig. 18
and note that the y-axis denotes the dynamic pressure of the flow.

Firstly, one cannote in this figure some flat parts in the temporal
signals. These corresponds to the time periods where the pressure
sensors are outside the fluid. In the calculations, one assumed
the pressure to have a constant value during these excursions
outside the fluid for easier comparison between experiments and
numerical simulations. Note that the small errors observed on
the level of these flat parts are mainly due to a little phase-shift
between experiments and numerical simulations. This induces
that the moment of the beginning of the excursion is not perfectly
reproduced and consequently that one has an incorrect level for
the whole flat part. Otherwise, the numerical simulations are in
excellent agreement for each probe during the whole experiment.
A zoom on the more demonstrative part (focused wave formation)
is reported in Fig. 19.

The accuracy of the simulation of this highly nonlinear phe-
nomenon is confirmed. Little discrepancies exist and particularly
on the probe signal located at z = 0m. This is due to the numerical
operator H2 used to compute this pressure, which tends to amplify
numerical errors close to the free surface. However, the numerical
simulations have still good accuracy compared to experiments.

These comparisons demonstrates again the capabilities of our
model, able to accurately reproduce not only the kinematics of
the evolution in the wave tank but also the free-surface and
underwater dynamics.
Fig. 19. Zoom of Fig. 18, comparison of pressure between numerical simulations
HOST-wm3 and experiments.

6. Conclusion

In the present paper, the development of an efficient and
accurate 3D NWT is presented. It is based on a nonlinear
HOS scheme, which exhibits attractive numerical characteristics
such as a fast solution with FFTs coupled to an accelerated
scheme, and a fast convergence providing high accuracy when the
nonlinear products involved are carefully dealiased. This numerical
model was initially applied to unbounded domain and recent
developments have extended the method application range to the
modeling of a wave tank including all its features: directional
wavemaker, absorbing zone, perfectly reflective side walls.

The HOST method and its numerical properties have been
detailed and more particularly the wavemaker modeling, which
appears to be a key point in the simulation, is detailed. The concept
of additional potential is introduced allowing a spectral solution
of the wavemaking problem. The new expansion to the third-
order wave generation based on the improvement of the first and
second-order model described previously in [13] is detailed. This
leads to a new NWT, namely HOST-wm3 whose characteristics in
terms of efficiency and accuracy are investigated.

Firstly, validations with low steepness cases have been carried
out to assess the accuracy of the solution. In the first place, long-
time 2D irregular waves are studied. The successful comparisons
emphasize the ability of the numerical model to: (i) correctly
generate the wave field (ii) accurately propagate waves in
the tank and (iii) satisfactorily model the physical absorbing
beach. Furthermore the improvements of our fully-nonlinear NWT
compared to a second-order one are discussed.

Secondly, the complex case of a 3D directional focusing event
embedded inside a 3D irregular wave field is studied. We provide
convincing comparisons between the HOST-wm3 model and
experiments on different wave probes signals measured around
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the focusing point. The accurate simulation of this 3D focused
event indicates the ability of the model to deal with complex 3D
sea states and thus to reproduce any experiments conducted in a
rectangular wave tank (with the exception of breaking waves).

The last part presents different validations/applications with
wave fields at moderate steepness. Firstly, the case of 2D regu-
lar waves (ka = 0.2) is presented. Some experiments have been
conducted in the ECN wave basin and comparisons on a wave
probe signal indicate the accuracy of our HOST models. The im-
provements of the second and third-order wave generation are
established compared to the first-order one and are investigated
in details. The advanced wavemaker modeling allows more accu-
rate simulations and particularly allow to take into account the
different physical processes involved during the wave generation
(e.g. generation of freewaves). The volume conservation during nu-
merical simulations is also studied, confirming the improvements
observed with the advanced wavemaker modeling. These appear
also clearly during the study of the return current inside the wave
tank. However, stability issues with the third-order model are re-
ported on at large steepness, limiting its range of application. Note
that it has been found previously [13] that the second-order wave
model is still accurate at large steepness.

The necessity of such an advancedmodel to precisely reproduce
all the physical features occurring in a wave tank is then clear. In
the end, the case of a 2D focused wave packet embedded in an
irregular wave field is analyzed. This kind of sea pattern involves
a wide range of wavemaker motions and nonlinearities. This test
case is thus suitable for the study of the improved wavemaker
modeling and the excellent agreement obtained between HOST-
wm3 and experiments confirms the accuracy of our method.

Appendix. Volume calculation

Here is explained the method used to compute the 2D volume
V inside the fluid domain D. One recalls that the depth is in non
dimensional form h = 1

V(t) =


D
dV =

 L

X(z,t)

 η(x,t)

−1
dxdz. (A.1)

The volume is split in different parts

V(t) =

 0

X(z,t)

 η(x,t)

−1
dxdz +

 L

0

 η(x,t)

−1
dxdz

=

 0

X(z,t)

 0

−1
dxdz +

 0

X(z,t)

 η(x,t)

0
dxdz

+

 L

0

 0

−1
dxdz +

 L

0

 η(x,t)

−1
dxdz

=

 0

−1
X(z, t)dz +

 0

X(z,t)

 η(x,t)

0
dxdz + L +

 L

0
η(x, t)dx

= L +

 L

0
η(x, t)dx +

 0

−1
X(z, t)dz +

 0

X(z,t)

 η(x,t)

0
dxdz

= Vrest + VSL + Vwmk + Vint. (A.2)

with Vrest = L the volume of the wave basin at rest, VFS =
 L
0

η(x, t)dx the volume of the free surface (without wavemaker),
Vwmk =

 0
−1 X(z, t)dz the one due to the presence of the wave-

maker (without free surface elevation) and finally Vint. =
 0
X(z,t) η(x,t)

0 dxdz the correction to take into account the simultaneous
presence of the wavemaker and the free surface.

Computation of Vrest,VFS et Vwmk is straightforward, only Vint.
as to be approximated

Vint. ≃ X(0, t) η(0, t) (A.3)
one refers to [35] for more details on volume calculations and
particularly to assess that this computation of Vint. is precise up
to second-order.
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