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We develop a robust numerical method for modelling nonlinear gravity waves which 
is based on the Zakharov equation/mode-coupling idea but is generalized to include 
interactions up to an arbitrary order M in wave steepness. A large number 
(N = O(lOO0)) of free wave modes are typically used whose amplitude evolutions 
are determined through a pseudospectral treatment of the nonlinear free-surface 
conditions. The computational effort is directly proportional to N and M, and the 
convergence with N and M is exponentially fast for waves up to approximately 80 yo 
of Stokes limiting steepness (ka N 0.35). The efficiency and accuracy of the method 
is demonstrated by comparisons to fully nonlinear semi-Lagrangian computations 
(Vinje & Brevig 1981) ; calculations of long-time evolution of wavetrains using 
the modified (fourth-order) Zakharov equations (Stiassnie & Shemer 1987) ; and 
experimental measurements of a travelling wave packet (Su 1982). As a final example 
of the usefulness of the method, we consider the nonlinear interactions between two 
colliding wave envelopes of different carrier frequencies. 

1. Introduction 
The study of the nonlinear dynamics of gravity waves has experienced much 

progress in the past 20 years. While it is now possible to calculate steep waves even 
up to overturning (Longuet-Higgins & Cokelet 1976), much of the attention in the past 
has been devoted to the understanding of weakly nonlinear waves using a variety 
of perturbation techniques. 

A remarkably successful approach for studying slowly modulated waves is the 
nonlinear Schrodinger equation (NLS) first derived for water waves by Zakharov 
(1968). By including the leading nonlinearity a t  third order (in wave slope), NLS 
predicts salient phenomena such as envelope solitons (Zakharov & Shabat 1972) and 
recurrence (Yuen & Ferguson 1978). Recently, Dysthe (1979) extended NLS to fourth 
order which is able to model non-symmetric features such as the unequal growth of 
sideband perturbations of a Stokes wavetrain, and the forward steepening and fission 
of wave packets (Lo’& Mei 1985). The main shortcomings of NLS are the requirements 
of narrow-bandedness and slow modulation which render it invalid for many 
applications - although in the important case of long-short wave interactions, where 
two or more disparate carrier frequencies are involved, coupled NLS’s (which may 
be derived, for example, via Whitham’s 1974 approach using multiple phase 
functions) may still prove useful. The limitations of NLS in three dimensions are 
much more severe in that perturbations that are initially confined in a narrow band 
do not necessarily remain so (Martin & Yuen 1980). 

Somewhat more general alternatives to NLS are the so-called Zakharov equations 
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(Zakharov 1968; Crawford et al. 1981) and the closely related mode-coupling 
approaches (e.g. Phillips 1960; Benney 1962; West, Watson & Thomson 1974; Cohen, 
Watson & West 1976). These weakly nonlinear theories do not rely on the narrow- 
banded assumption, and in fact the third-order Zakharov equation contains both the 
third-order and Dysthe’s fourth-order NLS as special cases under the assumption of 
slow modulation (Stiassnie & Shemer 1984). An indication of the power of the 
Zakharov equation is its ability to predict remarkable results in two and three 
dimensions such as linear instability, restabilization at large amplitudes and bifurc- 
ations (e.g. Yuen & Lake 1982). For computation of nonlinear wave evolution, the 
Zakharov equation is discretized in terms of a fixed number of free waves whose 
amplitudes are governed by coupled nonlinear evolution equations. These differential 
equations resemble the so-called mode-coupling equations which are obtained by 
directly substituting a series of Fourier modes into the governing equations and 
expanding to  a given order. In  both theories, all the nonlinear interactions among 
the wave modes are accounted for up to the desired order of accuracy, although owing 
to computational complexity only a relatively few, say O( lo), free waves can typically 
be used while the number of locked interacting components, or waves locked with 
the free modes so that they are not themselves governed by evolution equations, can 
be several orders larger depending on the order of the approximation. While the 
underlying idea is straightforward, the amount and complexity of the analyses 
required to extend Zakharov or mode-coupling equations to steeper waves increase 
rapidly with order. Thus, to date, the Zakharov equation has been modified to include 
quintet (fourth-order) interactions (Stiassnie & Shemer 1984), and mode-coupling 
equations have been studied extensively a t  third order only. 

By extending the Zakharov/mode-coupling idea, we develop in this paper a more 
direct numerical approach for gravity waves whose nonlinearities are not necessarily 
small. The method computationally accounts for nonlinear interactions up to  a 
specified order M in wave steepness provided that the Taylor series expansion of the 
velocity potential on the free surface about the mean waterline (cf. (2.4)) remains 
valid. A large number of free Fourier modes, N = O(1000) in each horizontal 
dimension, are typically used in our nonlinear simulations. Each of these components 
is ‘free’ in that it is subject to its own evolution equation. These modes interact up 
to  the desired order of approximation, and evolve, according to the nonlinear 
free-surface boundary conditions which we treat in a pseudospectral manner 
(Fornberg & Whitham 1978). The computational effort increases only linearly with 
M and, with the use of fast-Fourier transforms, also N .  Numerical experiments 
using exact propagating Stokes waves as benchmark show that the convergence of the 
results (up to, say, 5 significant figures in surface position, energy, etc.) with respect 
to N and M is faster than algebraic for intermediate steepnesses. Our experience 
indicates that  M = O( 10) is adequate for waves up to approximately 80 % of Stokes 
limiting steepness (ka 5 0.35), beyond which convergence is poorer and eventually 
fails. 

To evaluate the accuracy and performance of the present method, we also compare 
our results to  experiments and other theories for three different applications : (a) an 
overturning wave created by an asymmetrically applied surface pressure computed 
using a fully nonlinear mixed-Eulerian-Lagrangian scheme (MEL) (Longuet-Higgins 
& Cokelet 1976; Vinje & Brevig 1981); ( b )  the long-time evolution of a two-dimen- 
sional wavetrain calculated using the modified (fourth-order) Zakharov equation 
(Stiassnie & Shemer 1987); and (c) experimental measurements of the evolution of 
a wave envelope packet (Su 1982). The comparisons in all three cases are very 
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High-order spectral method for the study of nonlinear gravity waves 269 

satisfactory. For (a ) ,  computations can be continued up to close to the breaking point. 
In both cases (a) and ( c ) ,  it is found that as the wave steepens and tends to breaking, 
the amplitudes of the higher wavenumber components increase. Due to the finite 
truncation at  N ,  energy is not conserved and the numerical scheme then tends to 
become unstable. This is manifested by rapid growth in energy of the highest 
wavenumber modes and the loss of smoothness of the solution. We find that such 
instabilities can be effectively removed by applying a suitable filter to remove the 
energy near the truncation region. Surprisingly, this enables us to continue our 
simulations (and still maintain reasonable agreement) beyond the breaking stages 
observed in the experiment in (c) (see $4.3). In all cases, the apparent onset of wave 
breaking is marked by a distinct jump in the otherwise conserved total energy curve 
(e.g. figure 1 ) .  

To further illustrate the potential usefulness of the method, we consider as a final 
example the nonlinear interactions between two colliding wave envelopes of unequal 
carrier frequencies ($4.4). As expected, the packets emerge largely unaffected except 
for a shift in position and phase (Longuet-Higgins & Phillips 1962; Zakharov & 
Shabat 1972; Oikawa & Yajima 1974). 

We remark that although our numerical examples here are for deep water in two 
dimensions only, the present method is quite general and extends readily to 
three-dimensions and finite-depth (and even shallow water), several computations 
for which are being carried out and will be reported presently. 

2. Mathematical formulation 
We consider the irrotational motion of a homogeneous, incompressible and inviscid 

fluid under a free surface in arbitrary (finite or infinite) depth h. Surface tension is 
not considered. The origin is located at the mean water level and the vertical axis 
z is positive upward. For simplicity, the time and mass units are chosen so that the 
gravitational acceleration and fluid density are unity. The flow can be described by 
a velocity potential @(x,  z, t )  such that within the fluid @ satisfies Laplace's equation. 
Here x = (z, y )  is a vector in the horizontal plane and t is time. Following Zakharov 
(1968), we define the surface potential 

GS(X, t )  = m, q(x, t ) ,  t ) ,  (2.1) 
where z = q(x ,  t )  denotes the free surface, which we assume to be continuous and 
single-valued. In  terms of as, the kinematic and dynamic boundary conditions on 
the free surface are respectively 

qt + v, @-v, 7 - (1 + v, 7'V, 7) @JX? 17, t )  = 0, ( 2 . 2 ~ )  

@;+q+p,@S.V, @S-f(l +Vxq'V,q) @;(x,  q, t )  = -Pa, (2.2b) 

where V, = (a/az, a/ay) denotes the horizontal gradient and Pa is the atmospheric 
pressure. In addition, kinematic boundary conditions are prescribed on body 
boundaries and the fluid bottom; and for initial conditions, the surface potential 
@(x, 0) and elevation q(x ,  0) are given. 

We assume that @ and q are O(e)  quantities, where e, a small parameter, is a 
measure of the wave steepness. We consider a consistent approximation up to and 
including a given order M in e, and write @ in a perturbation series in 8: 

M 

m-1 
@(x ,  2, t )  = z @(m) ( x ,  2, t ) .  (2.3) 
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270 D.  a. Dommermuth and D. K. P. Yue 

Here and hereinafter, ( ) c m )  denotes a quantity of O(cm). We further expand each 
@(m) evaluated on z = 7 in a Taylor series about z = 0, so that from (2.1) we have 

M M - m  k k 

(2.4) 
7 a  

@S(x, t )  = @(x, 7, t )  = x x - 7 @(m) ( x ,  0, t ) .  
m-1 k-0 k! 

The validity and convergence of (2.4) is limited by the radius of convergence (from 
z = 0) of @, which cannot extend beyond the first singularity in the analytic 
continuation of @ above z = 7. In practice, this places the limit on the steepness of 
the free surface we can consider. At a given instant of time, we may consider and 
7 known, so that (2.4) is a Dirichlet boundary condition for the unknown @, Thus, 
expanding (2.4) and collecting terms at each order, we obtain a sequence of boundary 
conditions for the unknown CP(~)’S on z = 0: 

@m)(x,O, t )  = Hm),  m = i , 2 , .  . . , M ,  ( 2 . 5 ~ )  

where R(1) = 0 s  

and R ( m ) = -  m-l Z --@(m-k)(x,O,t), 7” ak m = 2 , 3  ,..., M .  (2.5b) 
k-l k !  a Z k  

These boundary conditions, in addition to Laplace’s equation and appropriate body 
and bottom boundary conditions etc., define a sequence of boundary-value problems 
for @(m) ,  m = 1 ,2 , .  . . , M ,  in the domain z Q 0. These problems can be solved 
successively a t  increasing orders for any prescribed @ and 7. 

As in a typical mode-coupling approach, we represent each @(m) as an eigenfunction 
expansion of free modes which satisfy all but the Dirichlet free-surface conditions 
(2.5). Thus we write 

(2.6) 
03 

@(m) (x, x, t )  = x @Lm) ( t )  Yn(x ,  z) ,  z < 0, 
n-i 

where, in practice, the number of eigenmodes is truncated a t  some suitable number 
N. Substitution of (2.6) into (2.5) determines the amplitudes @Lm) ( t )  in terms of the 
modal components of Gs. Our main objective is the surface vertical velocity 

M M - m  k N ak+i 

(2.7) 

which, when substituted into the free-surface conditions (2.2) yields the final result 

7 
@z(x, 7, t )  = C C - C @Lm) (t)a,k+l Y n ( x ,  01, 

m-1 k-0 “ n - 1  

M M - m  k N ak+i  

7L+vx@~.vx7-(1+v,7*v~r~[ m-1 x k-0 C ?L k !  n-1 C @ L m ) ( t ) p Y n ( x , O ) ]  = 0 

~+~+~V,@S.v,@S-~(l+ Vx7’V,r) 

(2.8) 

Equations (2.8) are the evolution equations for @s and 7 in terms of the modal 
amplitudes @km), which themselves are given by the values of these surface quantities 
according to (2.5), and the problem is complete. We point out that (2.8) is the 
generalization to Mth order in wave steepness of the perturbation equations which 
form the basis of mode-coupling formulations (e.g. West 1982, Appendix A). 
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High-order spectral method for the study of nonlinear gravity waves 271 

In a variation to the present approach the expansions (2.3) and (2.4) are avoided, 
the eigenfunctions Yn are continued above z = 0, and (2.1) is written directly as 

( 2 . 9 ~ )  

The corresponding expressions for the evolution equations (2.8) are 

(2.9b) I a N 

n-1 
rt+V,QjS*V,a-(1+V,a*V,~)  Z @ n ( t ) s y n ( x , a )  = 0, 

2 a N 

n-1 
+ a + ;tvX @s* vX @s-i( 1 + V, 7' V, 7) [ E @ n ( t )  z y n ( x ,  ./)I = - pa. 

By collocating ( 2 . 9 ~ )  at discrete points xj on the exact free surface, the modal 
amplitudes are obtained as solutions of a system of algebraic equations. Examples 
of this method include Rienecker & Fenton (1981) who performed the collocation in 
physical space, and Bryant (1983) who collocated in Fourier space. For deep water, 
Yn x exp (nz), say, and for maximum and minimum surface elevation qmax and amin 
respectively, the ratio I Yn(x,  am,,)/ Yn(x ,  ymin)l increases rapidly with n for finite E .  

As N increases, the conditioning of the equation system deteriorates severely, 
independent of the convergence of (2.4). Moreover, the operation count is typically 
O(W) per time step. Thus, the present scheme using (2.5) may be viewed as an 
effective and efficient perturbation solution of the system ( 2 . 9 ~ ) .  

In  the special case of shallow water, h 4 1, we may choose to expand @(x, z, t )  about 
z = - h instead. As a result, the series (2.7) for the vertical velocity can be summed 
explicitly, and the evolution equations (2.8) may be written in closed form as 

I at + V, @*V, + (1 + V, q*V, 7) TAN [ (a + h)V,] V, as = 0, 

@! + 7 ++V, 0' V, @-+( 1 + V, a*V, a){TAN [ (a + h)V,] V, @}' = -Pa, 

where the tangent operator denotes the sum (2.10u) 

= ( . ~ ~ + h ) v : @ ~ + $ ( a + h ) ~ V : @ ' +  ..., l(q+h)V,I G i n .  (2.10b) 

In order for the perturbation series to be convergent, the inequality in (2.10b) places 
a limit on the maximum horizontal wavenumber (and hence a maximum for the mode 
number N) relative to (7 + h) that can be used. Thus, for a given surface distribution 
QS, there is an upper bound on the resolution that can be achieved in the context 
of the shallow-water equations (2.10). 

For simple geometries, the eigenfunctions in (2.6) are readily available. For 
2n-periodic boundary conditions in (x, y), say, (2.6) can be represented as 

TAN [ (a + h) Vxl v, 0 s  

cn 
(x, z, t )  = E @(nm) ( t )  exp [ I ~ ~ l z + i ~ ~ * x ]  (2.11) 

n-0 

for deep water, and for constant finite depth h, 

(2.12) 

Here, IC, = (k,, k!) is the wavenumber vector, and the summation in n implies 
summing over all integer values of k, and k, including the complex-conjugate terms. 
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The analysis is slightly more complicated for a mildly varying bottom given by 

Q + V , ~ * V , @ - @ ,  = 0, on z = -h+g.  (2.13) 

For a mean depth h and a variation g = O ( E ) ,  a two-term expansion for @(m) can be 
used : 

@(m)  = ,(m) + p ( m ) ,  ( 2 . 1 4 ~ )  

where a(m) is as given by (2.12), and /?(m) satisfies zero Dirichlet condition on z = 0 :  

z = -h+S(x,  t ) ,  for example. The kinematic condition on the bottom is 

The sequence of equations corresponding to (2 .5)  in terms of a(m) and /3(m) is, upon 
substitution : 

\ on z = 0, a(') = r p ,  

(2.15) 
on z = -h,  

on z = 0,  

etc.. . . 

The evaluation of the vertical velocity and the free-surface evolution equation follows 
as before. For more complex boundaries (such as bodies), the set of eigenfunctions 
may be obtained by direct numerical means. The boundary-value problems for z < 0 
are in general linear, and for boundaries not moving more than O ( E )  in time, need 
to be solved only once. 

3. Numerical method 
3.1. Implementation 

The numerical method for a problem using N wave modes and retaining nonlinearities 
up to a specified order M consists of two parts: 
(a) Given the surface elevation ~ ( x ,  t )  and potential @(x, t )  on that surface at  some 

instant of time t ,  the modal amplitudes of the velocity potential @Lm) ( t )  subject to 
the Dirichlet condition (2.4) are solved using a pseudospectral method. Specifically, 
all spatial derivatives of @(m), GS and q are evaluated in eigenfunction (wavenumber) 
space while nonlinear products are calculated in physical space at  a discrete set of 
points xi. For periodic boundary conditions where the eigenfunction expansions are 
represented as Fourier series (2.11, 2.12 and 2.14), xi are equally spaced and 
fast-Fourier transforms are used to project between the wavenumber and physical 
domains. A t  each order, (2.5) is solved in wavenumber space by equating Fourier 
modes, and the number of operations required is O(N In N ) .  For perturbations up to 
order M the operation count is then O(MN In N )  per time step. 

(b)  The evolution equations (2.8) are then integrated in time to obtain the new 
values q(x ,  t + A t )  and @(x, t + A t ) .  For our present computations, we use a fourth- 
order Runge-Kutta integrator with constant time step At. 

The two-step procedure (a)-@) is repeated starting from initial conditions. 
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3.2. Error considerations 
There are four main sources of computational errors: 

3.2.1. Errors due to truncation in the number of modes N and order M 
For sufficiently smooth y and GS the coefficients @km) of an orthogonal eigen 

function expansion vanish more rapidly than any algebraic power of n as n + m. 
Similarly, for mild nonlinearities, the truncation error after order M is O ( s M f l ) ,  and 
converges exponentially fast as M increases. As is pointed out after (2.4), such 
convergence ceases beyond certain wave steepnesses owing to singularities in the 
analytic continuation of the velocity potential. These observations are substantially 
confirmed in our numerical tests for Stokes waves (see 53.3) where the critical 
steepness is found to be s = ka x 0.35. 

3.2.2. Amp1i;fication of round-o# errors 
The integrity of the numerical results can be severely limited by the amplification 

of computational errors. Consider, for instance, a small random error am, in the 
amplitude @irn), i.e. @km) = &Lm) (1  + 6,,), where the tilde denotes ‘exact’ values. The 
error in R(m), (2.5b), after using (2.6) is then given by 

In general, lak/i3zkYnl x Ixnlk, while lxnl x n, say, so that at  any order the error in 
the highest wavenumber modes is the most amplified. This is probably a root cause 
of unstable growth of errors in many nonlinear free-surface simulations where 
large wavenumbers (or fine spatial resolutions) are used. Notable exceptions 
include Vinje & Brevig (1981) and also Dold & Peregrine (1986). To eliminate such high- 
wavenumber instabilities, we follow Longuet-Higgins & Cokelet (1976) and apply a 
smoothing function to 7 and GS. Their five-point smoothing function can be 
effectively applied in wavenumber space which is equivalent to 

4 K n )  = y 5 + 4  8 c o s ~ ~ ) - c o s ( - ) ] .  

the low-pass filter 

(3.2) 

Alternatively, we may simply use an ideal low-pass filter 

It is useful to compare the areas under these filters 

(3.3) 

which indicates that A ,  would remove less energy than A if v > i. Since the ideal filter 
does not affect the lower wavenumbers, (3.3) is often preferred. In many simulations 
no smoothing or filtering is necessary. We point out that a useful alternative when 
modelling physical experiments may be to introduce wavenumber-dependent 
damping terms explicitly in the spectral equations. This is, however, not applied in 
the present work. 
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3.2.3. Aliasing errors 

series representations : 
Consider the product h(z) of two functionsf(z) and g ( z )  and their respective Fourier 

N N N 
h(x) = Z h, einz; f(z) = C fneinz; g ( z )  = X gneins. 

n--N n--N n--N 

In our pseudospectral application, the product is performed in physical space at  
equally spaced points zj : h(x j )  = f(xj) g ( z , ) .  Whereupon we have 

(3.5) 

The second sum represents the aliasing error terms which arise whenever 
j + k  = n (modulo N ) .  It is well known (e.g. Orszag 1971) that the best approximation 
to the product in the mean-square sense is the so-called alias-free sum. To obtain this, 
we double the number of modes (and the number of collocation points zj) for each 
function. Thus, we define new functions 6 = Tg, where 

6(x) = Z Kneinz; etc. 

and (Jn,  gn) = (f,, g,) for In( < N ,  and T,, gn = 0 for N < In1 < 2N. The Fourier 
coefficients of the alias-free sum h are then given by h, = 6, for In1 < N. For products 
involving two or more terms, the multiplication is done successively where each factor 
is made alias-free before multiplying by the next term. In general, for N alias-free 
modal degrees of freedom, 2N complex-conjugate pairs of Fourier coefficients must 
be used. 

h n =  Z f j g k + , + k z k N f j g k ,  j , k = O ,  f l ,  f 2 , . . . ,  fN. 
j+k-n 

2N 

n--2N 

3.2.4. Errors due to numerical time integration 
The local truncation error of the fourth-order Rung-Kutta (RK4) scheme that 

we use to integrate the evolution equations (2.8) is O(At5).  The global truncation error 
for t = O( 1) is fourth order in At (see table 2). RK4 requires twice as many evaluations 
as the commonly used fourth-order multi-step Adams-Bashforth-Moulton (ABM4) 
method, but has a somewhat lower global truncation error and a larger stability 
region. Using a linearized stability analysis, the Courant condition for RK4 is 
At2 < 8/IrcNI, which should also be a necessary condition for the nonlinear problem. 
In contrast, ABM4 is weakly unstable for any At according to linear stability analysis. 

3.3. Numerical convergence tests 
We test the accuracy and convergence (with respect to N, M and At) of our method 
using exact (progressive) Stokes waves as benchmark. For the solution of the latter, 
we follow Schwartz (1974) but solve the nonlinear equations associated with the 
mapping function (Schwartz' equations 2.6) directly using Newton iteration rather 
than high-order perturbation. The final results are exact to 14 significant figures. For 
simplicity, we consider deep water where, for a wavelength of 2 x ,  the eigenfunctions 
aregivenby(2.11) withintegerwevenumbersx, = ( n , O ) , n = O ,  + 1 ,  f 2 ,  ..., f N .  
The numerical tests consist of two parts: 

3.3.1. Convergence of the boundary-value problem solution 
This corresponds to step (a)  of $3.1 where here we prescribe 7 and as from exact 

Stokes waves and solve (2.5) for the velocity potential. In particular we compare the 
surface vertical velocity CD~I~-,, against the exact value. 
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M 

E N  2 4 6 8 10 12 14 

0.1 8 0.75 x 0.68 x 0.72 x 0.22 x 0.10 x lo-* 
16 0.75 x 0.68 x 0.65 x 0.64 x 10-a 0.49 x 

0.2 8 0.59 x 0.22 x lod3 0.15 x 0.18 x 0.13 x 
16 0.60 x 0.22 x 0.87 x 0.37 x 10-6 0.38 x lo-' 
32 0.60 x 0.22 x 0.88 x 0.35 x 10-B 0.14 x 0.75 x 10-@ 

0.3 8 0.19 x 10-l 0.22 x 0.47 x 0.14 x 0.16 x 
16 0.20 x 10-l 0.18 x lo-* 0.19 x lom3 0.59 x 0.24 x 
32 0 . 2 0 ~ 1 0 - ~  0 . 1 8 ~ 1 0 - ~  0 . 1 7 ~ 1 0 - ~  0 . 1 6 ~ 1 0 - ~  0 . 1 7 ~ 1 0 - ~  
64 0.20 x 10-l 0.18 x 0.17 x 0.16 x 0.16 x 0.21 x 10-O 0.33 x lo-' 

0.35 8 0.31 x 10-l 0.64 x 0.22 x 0.13 x loT2 0.13 x 
16 0.31 x 10-l 0.41 x 0.99 x 0.71 x 0.22 x 
32 0.31 x 10-l 0.40 x 0.53 x 0.94 x lo-* 0.95 x 0.16 x 
64 0.31 x 10-l 0.40 x 0.53 x 0.73 x lop4 0.11 x 0.38 x 0.68 x 

0.40 32 0.45 x 10-' 0.79 x 0.28 x 0.81 x loV2 
64 0.45 x 10-l 0.79 x 0.15 x 0.35 x 0.91 x 

128 0.45 x 10-l 0.79 x 0.15 x 0.30 x 0.89 x 

TABLE 1. Maximum absolute error in the free-surface velocitys Grlz-,, of a Stokes wave of 
steepness E for different values of mode number N and order of approximation M. 

Table 1 shows the maximum absolute error in @ z l z - r  as a function of the order M 
and the maximum alias-free wavenumber N for a range of steepness E, defined here 
for the Stokes wave as $(qmaX-qmin) where fundamental wavenumber k = 1. It is 
clear that for the steepnesses E 5 0.35, the error decreases exponentially fast with 
both N and M as they increase. (For any given M, the results converge to a limit 
exponentially rapidly as N is increased. On the other hand, N must be sufficiently 
large for the convergence with M to take place.) At  E = 0.40, which is approximately 
90 % of the Stokes limiting steepness, the expected convergence rate with respect to 
M is not realized. In  fact, the solution diverges as M increases even if N is also 
increased so that the minimax error is only about In three dimensions, the 
maximum wave steepness that we are capable of using is likely to be smaller because 
more functional evaluations and higher wavenumbers lxNl are required. In  practice, 
we first select M so that a given accuracy is achieved and then minimize N to limit 
round-off errors. 

To evaluate the usefulness of the present method for long-short wave interactions, 
we also conduct these simple tests for a boundary-value problem given by the 
superposition of two Airy waves of wavenumbers k, and ks(k, -g k,) and amplitudes 
aL and a, respectively. The surface position is given by the linear elevation qS + q,, 
and the boundary condition CP is prescribed by the analytic continuation of the linear 
potential to that surface. The boundary-value problem is solved for a range of ks/kL 
and k, aL = k, a,. By again considering the maximum error in the vertical surface 
velocity, the exponential convergence with N and M for a given E x ksa, is 
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TlAt 

€ t /T 20 30 40 50 60 

0.1 1 0.79 x 10-4 0.16 x 10-4 0.49 x 10-5 0.19 x 10-6 0.88 x 10-6 
10 0.63 x 10-3 0.12 x 10-3 0.38 x 10-4 0.15 x 10-4 0.66 x 10-5 

0.2 1 0.30 x 10-3 0.63 x 10-4 0.21 x 10-4 0.88 x 10-5 
10 0.28 x 0.51 x 0.16 x 0.66 x lo-' 

TABLE 2. Maximum absolute error in the free-surface elevation 7 of a progressive Stokes wave 
of steepness E and period T after integration time t for different values of time step At. 

confirmed. For example, for ks /k ,  = 10 and k ,  a, = ks as = 0.1, we are able to recover 
six significant figures of accuracy for M = 8 and N = 128. If the steepness e is doubled 
(keeping the same wavenumber ratios), however, the accuracy is decreased to only 
three decimal figures. 

3.3.2. Convergence of the numerical time integration 
We again use Stokes waves to evaluate the integration truncation error of our 

numerical scheme. The initial conditions for GS and 7 are prescribed from an exact 
Stokes solution for a specified E ,  and the wave is allowed to  propagate across the 
computational domain. We consider the maximum absolute error in the surface 
elevation after time t / T  = 1 and 10 for fundamental wave period T .  No smoothing 
or filtering is used. Table 2 gives a summary of this error for a range of time-step 
sizes At/T for e = 0.1 ( N  = 16, M = 6) and c = 0.2 ( N  = 16, M = 8). By examining 
the ratios of the errors as At is decreased, it is seen that the expected O(At4) global 
error is attained provided that the solution to  the boundary-value problem is 
sufficiently accurate. 

For our computations, the parameters M ,  N and At are chosen to  give a desired 
accuracy (say 6 x using the following simple procedure: (i) select the order of 
the perturbation M so that S x eM ; (ii) choose the minimum number of Fourier modes 
N based on table 1 to realize the required accuracy; and (iii) choose At/T according 
to table 2 subject to  the linear Courant stability condition. 

3.3.3. Other accuracy checks 
For the numerical examples in $4, the accuracy of the results is checked for the 

conservation of volume and volume flux, and energy. For conservation of volume, 
we have r 

7 dx = const, ( 3 . 6 ~ )  
JS. 

where So is the horizontal plane and the integral is easily evaluated in Fourier space. 
Alternatively, the total volume flux must be identically zero : 

(3.6b) 

where T~ is given directly by (2.2). Equations (3.6) are typically maintained to within 
in all the examples in 34. Finally, the solutions are evaluated for conserved total 

energy : 
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The first term is proportional to the rate at  which work is done by the atmospheric 
pressure and the second term the rate of change of kinetic and potential energy in 
the fluid volume. If the surface pressure is zero, the total energy is constant. We 
remark that local measures of error such as smoothness are usually more useful for 
showing the loss of accuracy of a numerical scheme. Since we eliminate the 
high-wavenumber modes in our most nonlinear simulations, global checks such as 
energy conservation give a good measure of the cumulative effects. 

4. Numerical results 
To illustrate the validity and usefulness of the present method, we consider here 

four different numerical applications: (1) The steepening up to breaking of a Stokes 
wave due to an asymmetrically applied surface pressure. Our results are compared 
to those obtained using the fully nonlinear mixed-Eulerian-Lagrangian (MEL) 
method (Longuet-Higgins & Cokelet 1976; Vinje & Brevig 1981). (2) The evolution 
of a Stokes wavetrain due to type I unstable growth of sideband disturbances. 
Comparisons are made to the recent calculations of Stiassnie & Shemer (1987) using 
the modified Zakharov equations. (3) The long-time evolution of a Stokes wave 
packet. We study and make comparisons to experimental measurements of Su 
(1982). (4) Finally, to demonstrate the effectiveness of the method for large-scale 
problems, we consider the nonlinear interactions between two wave envelopes of 
different central frequencies as they collide. Although the wave packets themselves 
evolve considerably during the collision, even in the absence of the other group, the 
effect of the collision is not appreciable and as expected is manifested primarily as 
a shift in position as the groups emerge (Longuet-Higgins & Phillips 1962 ; Zakharov 
& Shabat 1972; Oikawa & Yajima 1974). We remark that for the long-time 
simulations, the problems may be more efficiently solved to lower orders or more 
approximately (say using only a few free-wave components) using the NLS or the 
Zakharov mode-coupling equations. 

All the examples are in two dimensions and deep water using periodic boundary 
conditions. For simplicity, we fix the computational domain to be --A < z < -A. The 
appropriate eigenfunction expansion is then (2.11) with K, = (n ,  0 ) ,  n = 0, & 1, +2, 
. . . , & N. The initial conditions are modulated Stokes waves which we prescribe from 
exact (14 decimals of accuracy) results. For later reference, we define @ [ E ,  k] and 
qo[e, k] to be respectively the free-surface potential and elevation of a right-going 
Stokes wave of steepness E and wavelength A = 2n/k whose phase is such that there 
is a crest at z = --A at time t = 0. 

4.1. Steepening and breaking wave 
The present theory assumes from the outset that the free surface is single-valued, 
and, because of expansions of the potential about the mean position in (2.4), limited 
to waves that are not too steep (see $3.3). Our primary objective here is to study 
a wave that gradually steepens (and eventually overturns) and to consider how far 
our simulation can be continued before it fails. In addition to quantitative 
comparisons to fully nonlinear MEL calculations, it is also of interest to examine the 
behaviour of the solution and specifically the deviation in the energy conservation 
near the failure point. We use as initial condition a Stokes wave with [E, k] = [0.15,1] 
and apply a surface pressure, moving with the wave: 
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MEL Spectral method 

No smoothing With smoothing 
L = 32 7.04 N = 1 6  M = 4  7.03 6.98 
L = 6 4  7.11 N = 1 6  M = 5  7.15 7.10 
L = 128 7.13 N = l 6  M = 6  7.16 7.11 
L = 256 7.14 

TABLE 3. Convergence in the maximum total energy ratio E(iT)/E(O) of a Stokes wave with an 
applied asymmetric surface pressure. RK4 with T/At = 100 is used for all the calculations. For the 
case with smoothing, a five-point smoothing filter (3.2) is applied at every time step. 

where T and c are respectively the fundamental period and phase speed of the Stokes 
wave, and Po = 0.35 for this simulation. The wave increases in energy until it reaches 
its maximum a t  t = 2T at which point the pressure is turned off. Table 3 shows the 
convergence of results for the ratio of the maximum total energy to the initial energy 
of the wave E(+T)/E(O). The MEL formulation that we use is similar to that of Vinje 
& Brevig (1981). Cauchy’s integral theorem is applied for this periodic deep-water 
case and the free surface is discretized into L linear segments with piecewise linear 
variation of the complex potential on each segment. For definiteness, no smoothing 
is used in the MEL calculation. For the present method, we consider both the case 
when there is no smoothing and when five-point smoothing (3.2) is applied at every 
time step. A t  t = ?jT, the wave has acquired a total energy over seven times its initial 
value. Even for this steep wave, the spectral method appears to converge rapidly as 
M increases ( N  = 16 already gives more than sufficient accuracy at M = 6). Here- 
in after, we use L = 64 for MEL, and N = 16, M = 6 for the spectral-method calcu- 
lations, and RK4 with T/At = 100 for all the time integrations. 

In figure 1, we compare how well the numerical methods conserve energy as the 
wave evolves with time. Up to the point when the spectral method without smoothing 
fails, it conserves total energy better than the other two methods. The failure occurs 
at t x 0.9T which is shortly after the kinetic energy of the wave has reached its 
maximum. The wave itself begins to turn over after the next maximum of the kinetic 
energy, and both the spectral method with smoothing as well as MEL (without 
smoothing) breakdown soon afterwards at t x 1.5T. In  the spectral-method simu- 
lations, the amplitudes of the high-wavenumber modes increase as the wave steepens, 
and the final failure is marked by a change in the total energy due to a rapid growth 
of energy of the modes near the truncated end. An unrelated source of error is 
the saw-tooth instability which also affects the highest wavenumbers. Thus, our 
smoothing filters (3.2), (3.3) help to alleviate both problems. 

Figure 2 plots the free-surface profiles using MEL and the spectral method (with 
smoothing) for two relatively late times t /T  = 0.96 and 1.46. (The comparisons for 
earlier times are substantially better and the profiles cannot be distinguished 
graphically.) The comparisons are satisfactory over most of the wave profile with the 
main discrepancies occurring on the forward face, where the spectral-method slope 
is not as steep as that predicted by MEL, and at the crest as the wave steepens (and 
eventually overturns). For the spectral method, the maximum local wave slope 
reached is (aq/ax),,, x 0.9 (six times the initial steepness) at t x 1.05T, at which 
point the total wave height is over three times its initial value. 

The entire simulation ( x 150 time steps) using the spectral method (with smooth- 
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tl T 
FIQURE 1. Ratios of the total energy E, potential energy P,, and kinetic energy K ,  relative to 
the initial total energy of a steepening wave (fundamental period T)  under an asymmetric surface 
pressure. The results are for: -, MEL; ---, spectral method (without smoothing); ----, 
spectral method (with smoothing). The surface pressure is turned off after t = 4T. 

0.15 - I I 

i 
- = 0.96 T 

-0.10 1 I 

-0.50 -0.25 0 0.25 0.50 

X I  A 

FIQURE 2. Free-surface profiles 7 of a steepening wave, fundamental period T and wavelength A ,  
under an asymmetric surface pressure calculated using MEL (-) and spectral method with 
smoothing (----) at times t /T = 0.96 and 1.46. The vertical scale is exaggerated. 

ing) for this problem with N = 16 and M = 6 requires less than half a minute of 
computation time on the Cray-2 computer. In contrast, the MEL computation with 
L = 64 takes approximately 20 times longer. More importantly, the computational 
effort for the spectral method increases only linearly with N and M, while the 
computation time for MEL, which has only a second-order accuracy, increases 
quadratically with the number of segments L. 
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4.2. Modulation of a Stokes wavetrain due to type I instabilities 
Stiassnie & Shemer (1984) extended Zakarov’s equation to fourth order, which they 
used in a later work (Stiassnie & Shemer 1987, hereinafter referred to as S$S) to 
simulate the coupled evolution of class I and class I1 instabilities of surface gravity 
waves on deep water. I n  this section, we compare our spectral-method calculations 
to their simulation for type I instability of a Stokes wavetrain. For their Airy wave 
steepness of E ,  = (xu), = 0.13, the wavenumbers of the most unstable class I modes 
are approximately _+22 % of the fundamental. I n  order to  make a comparison, we 
use as initial condition a Stokes wave, [ E ,  k ]  = [0.13,9], modulated by two Airy 
sideband waves ( k  = 9 is chosen so that integral numbers of the sideband modes can 
be fitted into the computational domain) : 

(4.2) 
q(x,O) = q,[0.13,9]+O.la0 cos (7x-$r)+0.laO cos ( l l x - i n ) ,  

a a 
@(z,O) = @ ~ [ 0 . 1 3 , 9 ] + 0 . 1 ~ e 7 ~ s i n ( 7 z - ~ n ) + 0 . 1 ~  e1lv sin ( l l x - i n ) ,  

d7 d11 

which to leading order is the same as that used by SkS. I n  S&S’s fourth-order 
simulation, only a limited approximation with 5 free waves was used. To compare 
with S&S, we set M = 4 but consider a total of N = 64 free wave modes. Our time 
step is +, of the fundamental wave period T ,  and no smoothing filter is used. 

The time histories of the fundamental (k = 9) ,  subharmonic (k = 7 ) ,  and super- 
harmonic ( k  = 11)  are plotted in figure 3 and compared to S&S’s results (their figure 
1 ) .  Both computations predict a first minimum of the fundamental near t x 60T, 
which closely corresponds to the timescale for type I interactions, T/E: .  The 
amplitude of each harmonic relative to the initial amplitude of the fundamental does 
not agree as well, but the overall qualitative behaviour (for example the relative 
amplitudes of the two side harmonics a t  their maximum and minimum) is preserved. 

Unlike S&S, our simulation breaks down after t x 140, at which time the wave 
steepens and possible local breaking phenomena cannot be ruled out. This is further 
indicated by the conservation of total energy for our run which is shown in figure 4 
for the quantity (E( t /T )  - E(O))/E(O). Our total energy is conserved to  within 0.01 % 
for t < 40T, to within 0.1 % for t < 50T, and to  within 2 % for the duration of the 
simulation. (For comparison, S&S reported total energy conserved to  within 1 yo.) 
Near t x 60T, which corresponds to the minimum of the fundamental amplitude and 
maxima of the sideband amplitudes, there is an  abrupt change (of the order of 0.5 yo) 
in the total energy, after which the numerical result recovers but eventually breaks 
down a t  t x 140, which again corresponds to  maxima in the sideband perturbations. 

Figure 5 shows the actual free-surface elevations at times t / T  = 0,57 and 104. At 
t /T  = 0 and 104, the fundamental dominates, while at t / T  = 57 the sidebands do. 
The maximum local wave slope reaches almost four times ((Clq/8x)max x 0.6) that  of 
the initial wave at t = 57T, which may suggest why the computed total energy is not 
as well conserved near that time. 

4.3. Evolution of a wave packet - comparison to experimental measurements 
Su (1982) studied experimentally the evolution of wave groups that had initially 
square envelopes. For (Airy) wave steepnesses ranging from E ,  = 0.09 to  0.28, he 
measured the free-surface elevation at eight stations down the tank. For wave 
steepnesses E ,  >, 0.14, he observed intense two-dimensional breaking a t  distances 
between ten and twenty carrier wavelengths from the wavemaker. Fifteen to 
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FIGURE 3. Time histories of the amplitudes of the fundamental (k = 9), subharmonic (k = 7)  and 
superharmonic (k = 11)  modes relative to the initial amplitude of the fundamental for an evolving 
Stokes wavetrain. (a )  From Stiassnie & Shemer (1987); (21) present results. T is the period of the 
fundamental. 

twenty-five wavelengths from the wavemaker, crescent-shaped breaking waves often 
developed, and from twenty to forty-five wavelengths away, two-dimensional spilling 
breaking was common. In this section, we compare our theory to one of Su’s 
experiments, which initially had a steepness of e,, = 0.15 and a packet which 
contained approximately five fundamental waves at  the beginning. To simulate this 
experiment, we begin with a Stokes wavetrain which has 15 waves in the 
computational domain, i.e. [e, k] = [0.15,15], and modulate i t  with a tapering 
function of the form 
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FIGURE 4. Relative change in the spectral-method total energy (E( t /T)  -E(O))/E(O), of an 
evolving Stokes wavetrain, fundamental period T. 

The parameter r measures the steepness of the taper at the beginning and end 
positions, xb and x, respectively, of the resulting envelope. To avoid Gibb’s 
phenomenon at the boundaries, (4.3) is periodically extended. The initial condition 
that approximately gives the desired five waves in the packet is then 

(4.4) 

(Note that a wave probe would measure ten waves in (4.4) since the group velocity 
is roughly half the phase velocity in deep water.) The parameters for our numerical 
simulation are N = 256, M = 6 and T/At = 40. To allow the computations to 
continue after the waves may have become locally too steep, and possibly also to 
model some loss of wave energy due to breaking, we apply the ideal filter A ,  with 
v = 0.5 whenever the total energy of the wave packet changes by more than 1 Yo. This 
smoothing operation eliminates all Fourier modes whose wavenumbers are greater 
than eight times the fundamental. 

We show comparisons between Su’s wave-probe measurements and our computed 
results in figure 6.  The experimental traces are reproduced directly from Su (1982) 
and do not have a vertical scale. The horizontal scales are, however, the same. Overall, 
the agreement is qualitatively good and appears to improve as the wave group travels 
down the tank. At about fifty wavelengths from the wavemaker, we confirm the 
experimental observation that the wave group fissions into two packets. In com- 
parison to the computations for the same experiment by Lo & Mei (1985), who used 
Dysthe’s fourth-order NLS, our results are comparable. 
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FIGURE 5. Instantaneous free-surface elevation of an evolving Stokes wavetrain (fundamental 
period T and wavelength A )  at times: (a) t / T = O ;  (a) 57; and (c)104. The vertical scales are 
exaggerated. 

The total-energy time history is shown in figure 7. The energy is conserved well 
except at approximately t/T x 40-50. In this region, the filter A,(k,  0.5) (triggered 
by a 1 % change in energy) is repeatedly applied, which eventually removed almost 
20% of the energy from the system. We find that filtering (singly or in close 
succession) is often required at  intervals of approximately two fundamental periods, 
which may be related to the relative motion between the waves and their envelope 
as suggested by Longuet-Higgins (1974). It is interesting to note that the time range 
over which we use smoothing roughly corresponds to times at  which wave breaking 
was observed in the experiments. By monitoring the total energy and suitably 
removing energy in the higher-wavenumber modes, the present method can be 
continued beyond the stages of apparent local breaking. In  many applications, this 
may offer an advantage over fully nonlinear methods such as MEL, which breakdown 
as soon as the wave begins to spill or plunge into itself. 

10 FLM 184 
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FIGURE 6. Comparison between experiments and theory for the free-surface elevation of an evolving 
wave packet (fundamental period T and wavelength A )  at positions from the wavemaker 
x/A = 4.88, 14.6, 19.5, 34.2 and 48.4. The experimental results are reproduced from Su (1982). 

4.4. Nonlinear interactions between two wave groups 
This example is chosen primarily to demonstrate the performance of the present 
method for a larger-scale problem. We consider the head-on collisions between two 
wave groups for which the wavelength of the waves in one group is twice that of the 
other. For each wave group, the initial steepness of the waves is E = 0.16. To evaluate 
the effect of the inter-group interactions, we repeat each simulation with only a single 
propagating group present and compare the results. In  the nonlinear simulations, we 
use N = 512, M = 6, and %/At = 40, where T, is the fundamental period of the 
shorter waves. The ideal smoothing filter A ,  with v = 0.9 is used every forty time 
steps or one short-wave period. The total energy is conserved to five significant figures 
for the duration of the simulations. As initial conditions we choose 

( z, ~ ~ ) y o [ 0 . 1 6 , 5 0 ] + F  

(4.5) 

y(x,O) = F x;-, -- -- 

@ ( x , O )  = F 
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RQURE 7. Computed total energy of an evolving wave packet, fundamental period T and 
wavelength A. Diamond symbols indicate the use of the ideal filter A,(v = 0.9) which is applied 
whenever the total energy changes by more than 1 yo. 

which gives approximately six waves in each group. Figure 8(a)  shows this initial 
profile together with its Hilbert transform envelope A(z ,  t )  given by 

A2(z,  t )  = T2(”, t )  + P ( r ( z ,  t ) ) .  (4.6) 

The fingering in the envelope is caused by the wave crests being more peaked than 
the troughs. Figure 8 shows the free-surface profiles after the interaction has taken 
place at t = 31% when the groups have emerged on the opposite sides. These are 
compared to the single groups after propagating for the same time, and to the linear 
result (for the short-wave envelope in figure 8c) obtained using M = 1 and the same 
Nand At. The interaction time is smaller than, but of the same order as, that required 
for type I interactions x%/e; = 39Ts. As expected, the interaction between the 
groups is relatively small even though the effects of nonlinearity are appreciable as 
shown by the steepened fronts and the characteristic wedge-like shapes of the 
individual envelopes (e.g. Su 1982). Even with sixth-order interactions included, the 
only effect of the collision appears to be a small shift in position of the envelope 
corresponding to a decrease in speed of the group. The effect is more pronounced for 
the short-wave group, which is in qualitative agreement with the predictions of 
Longuet-Higgins & Phillips (1962) for decreases in phase speeds of two third-order 
Stokes wavetrains travelling in opposite directions. The present results generalize to 
higher order the observations of Oikawa & Yajima (1974) for interacting solitons of 
different carrier frequencies. 
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