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Numerical integration

Gauss-Legendre Quadrature

® In the Newton-Cotes quadrature, the base point locations have
been specified. If the x; are not specified, then there will be 2r +
2 undetermined parameters, r + 1 weights wl and r + 1 base
points x;, which define a polynomial of degree 2r + 1

® The Gauss-Legendre quadrature is based on the idea that the
base points x|l and the weights w can be chosen so that the
sum of the r + 1 appropriately weighted values of the function
yields the integral exactly when F(x) is a polynomial of degree
2r + 1 or less

The Gauss-Legendre quadrature formula is given by
b 1 r R
| Feodx= | F@dg =) Fepm,
a -1 =1
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Numerical integration

j P = [ F(©a ~ ZF(mw,

where wl are the weight factors, ¢ are the base points [roots of
the Legendre polynomial P..,(é)], and F is the transformed

integrand "

9 F©) = F((©)] (€, dx = Jd¢
where j is the Jacobian of the transformation between x anbd ¢.
The weight factors and Gauss points for the Gauss-Legendre
quadrature are given for »r = 1~6 in Table
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Numerical integration

Weights and Gauss points for the Gauss—Legendre quadrature.

I

F(E)dE = ‘\f(&JHu
J. P

Points, &

/

Weights, w;

0.0000000000
+0.5773502692

0.0000000000
(). 7745966692
+().33998 10435
FOB611363116

O.0000000000

£0.5384693101
£0.906 1798459

+().2386191861
FO.6612093865
+().9324695142

iNote that 0.577

().888 8/9, and (0.555..

35,

20000000000
1.0000000000)
(). 58888888 8Y
(.6521451548
(.3478548451

().56888BE8RO
0.4786286705
0.2369268850
(.4679139346
(0.3607615730
0.1713244924

1/+/3, 0.77459

5/9

WL -
vi/5, and

The Gauss-Legendre quadrature
iIs more frequently used than
the Newton-Cotes quadrature
because it requires fewer base
points (hence, a saving in
computation) to achieve the
same accuracy

® A polynomial of degree p is

integrated exactly by
employing » = 0.5(p + 1) Gauss
points. When p+1 is odd, one
should pick the nearest larger
integer

r = E(p+1)]
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Numerical integration

xp 1
j F()dx = j F©ds,  PEE = FG©)ds

so that the Gauss-Legendre quadrature can be used to evaluate
the integral over [-1,1]. The differential element dx in the global
coordinate system x is related to the differential element d¢ in the
natural coordinate system ¢ by
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Numerical integration

For example, consider the integral

Xp w l/)
K¢ = j a(x) d——L dx
Yoo dx dx

Using the chain rule of differentiation we have
dp;i (x) _dypi(§)ds ]_1d¢f (£)

COMPUTATIONAL MARINE HYDRODYNAMICS LAB

dx ~  df dx dé¢
Since
o dx
x=2xielpf dx =—Ed5 Jed$
i=1
K.e.:f a(x(g))— Wi 1dy; Jd¢é = Zr: F5&Dw
L J d§ ] d§ £
where pe _ LW dy; ]=§:x?dzﬁf
U7 ag Tag T LT g
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Numerical integration

‘Determine the exact number of Gauss points required to evaluate '
the following element coefficients

Kie_ _ fxb dl/)ie dl/)f e +1 dl/)ie dl/J]
xa dx dx _, d& dé

ZG W,

+1 +1
Mg = wi PYodx = f RAGTIGTE j e

A polynomial of degree p is

() 2Jdt = j GK (6)de

z G (DWW, integrated exactly by
» employing » = 0.5(p + 1) Gauss
fo =[x = | vt = j 65 (6)de points.
Element type N& NM N

ZG (EDOW; O ; J o —

Linear
Quadratic

) |
3 2
Cubic } 2

“JJ?‘I—‘
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Numerical integration

Integration over a Master Rectangular Element

Quadrature formulas for integrals defined over a rectangular

master element 2, can be derived from the one-dimensional
quadrature formulae. We have
N

F&npw,
J=1

1

jﬁRF@,n)dfdn - 11 [ | 11F<f,n)dn] s~ [ 1

M N
~ z z F(fI»UJ)WIMG
=1 =1
where M and N denote the nhumber of quadrature points in the ¢

and n directions, (¢,n,) denote the Gauss points, and W, and W,
denote the corresponding Gauss weights

dg
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Numerical integration

[ remazan=| [ reemanlas~ | imt W |dg
~ i i F(&nLn)wiW,
=1 J=1

The selection of the number of Gauss points is based on the
same formula as that given in 1-D

A polynomial of degree p is integrated exactly employing N =
int[0.5(p + 1)]. In most cases, the interpolation functions are of
the same degree in both ¢ and n, and therefore ¥ = N. When the
integrand is of different degree in ¢ and n, the number of Gauss
points is selected on the basis of the largest-degree polynomial
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Numerical integration

LLocation of
integration points®
in master element

Maximum Order of Order of

Element polynomial integration the
type degree (r xr) residual
Constant (r = 1) 0 L] Oh*)

The maximum degree of the polynomial refers to
the degree of the highest polynomial in ¢ or n in the
integrands of the element matrices

¢ )

N -

9

Linear (r =2) Oh*)
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Numerical integration

Maximum Order of Order of Location of
Element polynomial  integration  the integration points®
type degree (r xr) residual in master element
M

; :
Quadratic (r =3) 4 (3 x3) O(h®) n=0-- e l ¢

n=0861.
n=0.339.

Cubic (r =4) 6 (4 x 4) Oh")

Nay

n=-0339..
n=-03861.
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Numerical integration

The N x N gauss point locations are given by the tensor product
of one-dimensional Gauss points ¢;

.
&

é

1,82, -, éN) =

_(511 51) (511 62)
(5219(1) h

[GRD
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Numerical integration

Example

Consider the quadrilateral element ;. We wish to evaluate a
0¥;/ox and o¥;/dy at (¢,n7)=(0,0) using the isoparametric

formulation

1
Pr=-0-)0-n)

4
1
¥ =1+ -n)
1
Wy =21+ +n)
1
Wy =5 (1= +1)
NA26018 Finite Element Analysis of Solids and Fluids CMH
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Numerical integration

Recall that,

Ul =

| On

an

j=1
@_i Y5
' on ~ La” oy
j=1
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Numerical integration

0x  0y] 0.0 0.0]
] = ¢ ao¢|_1|1-A-n) 1-n 1+n —-A+n)||[20 0.0
|ox dy| 4|-(1-& —-(@A+& 14+¢& 1-¢& [[2.0 3.0
on 1| 0.0 5.0

: . 1 ]

_ —5( +1)

1
0 -

The inverse of the Jacobian matrix is given by

‘1 1+n
[1]1:0 2 | u=b Ja=0 Je=gTn =Ty
| 4=

CVIHL Sommous e R o
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Numerical integration

Recall that, 1
1
0x _1 ) 0¢ Y, ==1+81—n)
4 = 4 >
owe [~V | aut t
L3y 'y Y3 =70+ +n)
1
Y, = Z(l -8 +n)
v A
Y, _ Y, N 1+n0dyY; oY, _ 2 0y
ox 08§ 4—&o0n’ dy 4—¢& on
with
1
Yi =7 A+ 88 +mm), SN
o 1 a; _ 1 2
T —451'(1"'77771'); o —4Tli(1+ffi) 0:—-—{*—‘5’—’1‘
NA26018 Finite Element Analysis of Solids and Fluids CMHL gmgﬁﬁﬁmoiﬂkﬁmﬁgﬁ




Numerical integration

oY; 1 1/147
ax——fl(1+nm)+ <4 Sz>77l(1+€€l)

oy, 1 2

Thus, al”‘ and a”" at (¢,7)=(0,0) is

al/)L _ al/)i _ 1
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Numerical integration

Example

Consider the quadrilateral element in Fig. We wish to compute
the following element matrices using the Gauss Legendre
quadrature

0; 0

00 _ 11 _ i

Sij - JQ 1/J11/J]dxdy, Sij = Jﬂ 9x Ox dXdy
0y; 0Y; 0; 0

S§22 = L~ dxdy, _1.2:J LYY

i7 . 3y ay xdy Sij ., ox 3y dxdy

The transformation equations are

- ~ ~ - 1

N N N N 1
y:0'1/J1—1'1/J2+51/J3+41/J421(8"'1077'*'2577)
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Numerical integration

The jacobian matrix and its inverse are

(dx 0Y]
_|og og|_18-2m 21 | L, _1 _
on  On.
[I]‘l—i 10 + 28§ =27 = 10 + 2¢ Jo = 21
4y 2¢ 8—2n]" ‘7 20+ 4&—5n’ 12720+ 48 — 57’
i} 2¢ i} 8 —2n
Jo1 = — J22= —
20 + 4¢ — 57 204+ 4¢ —5n

¥
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Numerical integration

The matrix [/] transforms base vectors é,=(1, 0) and é,=(0, 1) in
the x — y system to the base vectors ég and ¢, in the ¢ —n system,

[ —_2?7 10 + 28 {1} B %{8 ;nzn}' [8—2?7 10 + 28 {O} B %{10_525}
= %[(8 —2n)éx + 208, &, = %[—Zféx + (10 + 28)é, |

Hence, the area element dxdy in the x — y system is related to the
area element dé¢ dn in the ¢ — n system by

118—2n —2¢

dxdy =1g 2n 10 + 2¢ dédn = Jdédn
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Numerical integration

The coefficients S;° and S;, can be expressed in natural
coordinates (for numerical evaluation) as

590 = j wiyxdy = | 11 | 11¢i¢j1dfdn

;9
Silj1 = v l/)]d dy J f (]11 9E +]12 ;{;)(]11 al/;] + J12 al/)])]dfd

q Ox 0x

Recall in last Example,

1 ;1
Y =—(1+ffz)(1+77771)%=Z(1+U77i)y%=zm(1+ffi)

Note that the integrand of polynomial of the order p = 3 in each

coordinate ¢ and n. Hence. N = M = 0.5(p + 1) = 2 will evaluate §;;
exactly

c M H COMPUTATIONAL MARINE HYDRODYNAMICS LAB
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Numerical integration

599 = jﬂwlwldxdy - 11 f_llwlwdfdn

1 1 1
=/ 1 f_l(l — £)2(1 — m)?(20 + 4§ — Sn)dédn

2
1
== Z (1 - &)2(1 — n1)2(20 + 4&, — 57,)

i,j=1
where ¢; and n; are the Gauss points

G = (-5 5) @m0 = (57 CEEemn=-(F3)
$1,12 \/—\/— (é2,1m2) = \/§'\/§ (1,1 = \/—\/— (¢2,m1) \/— \/—
o _ 1| AN\ (o A5 AN A (g A5
N (”ﬁ) (20 @*@)*(”@) (1 @) (20 7 @)
_1 1120 160 32 4 1312_
_a[ 5+ 3\/_(_\/—_ T)] —og = 227778
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Numerical integration

:Jr_l (]11 (;/:;1"‘]12 al/;><]11 al/;l"‘hz alpZ)]dfd

1
= af_lf_l[—(w +25)(1—n) +2n(1 - H][(A0+ 25 (1 —n) + 2n(1 = $)]

X (20 7 42 = 55) B

1 1 1
— @j_l L[—(w +28)2(1 —n)? +4n%(1 - §)?]

(20 + 42 —5n) B
By using 2 point Gauss integration,

s%%——fj ~(10 + 20)2(1 = 1)? + 4n*(1 = %) e g

1
64(20 + 4¢; — 51;)

~ z l_(10+2€z)2(1 S IREUISCENS ]

i,j=1
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Numerical integration

Integration over a Master Triangular Element

In the preceding section we discussed numerical integration on
quadrilateral elements that can be used to represent very general
geometries as well as field variables in a variety of problems

Here we discuss numerical integration on triangular elements

® Master triangular elements can be obtained in a natural way
from associated master rectangular elements

Since quadrilateral elements can be geometrically distorted, it is possible
to distort a quadrilateral element to obtain a required triangular element
by moving the position of the corner nodes to one of the neighboring
nodes. In actual computation, this is achieved by assignhing the same
global node number to two corner nodes of the quadrilateral element

CMH COMPUTATIONAL MARINE HYDRODYNAMICS LAB
SHANGHAI JIAO TONG UNIVERSITY
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Numerical integration

We choose the unit right isosceles triangle as the master

element

An arbitrary triangular element Q¢ can be generated from the master

triangular element Q7 by transformation

® The coordinate lines ¢ = 0 and n = 0 in QT correspond to the
skew curvilinear coordinate lines 1-3 and 1-2 in Q¢
For the 3-node trlangular element, the transformatlon Is taken

to be

= Xxillii(f;n):

(0.1)

(0.0) (1.0)

y= zyu/J (&)

n

N j".\‘* x(0,n)
|

Ly =y(0,n)

[X= x(5,0)
/ Ly =y(&0)

-

NA26018 Finite Element Analysis of Solids and Fluids
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Numerical integration

The inverse transformation from element Q¢ to Q7 is given by

§ = 7 [(x —x1)(y3 —¥1) — (v — y1) (x3 — x4)]

n=z [(x —x1) (71 —¥2) + (7 — y1) (x2 — x1)]

where A is the area of Q¢
The Jacobian matrix for the linear triangular element is given by
1 _[*¥2—=%1 Y2—=X1] _[vs —Bs
U= [ ] —Y2 B> ]

X3 —X1 Y3— W1
ai = XjVk — XgYj
Bi =Y — Yk }(i + j # k;i,j, and k permute in a natural order)
yi = —(x; — xx)

1
1! =7 ')[Z '][jj J = Ba2ysz — v2P3 = 24

NA26018 Finite Element Analysis of Solids and Fluids CMHL SEIANGH%IiAII'MO TOILYER?}’NMISSIL{“Q



Numerical integration

Recall that, D=1-¢—1n  P,=&  Ps=1
fawf\ (0§
dx _ -1 af
15 e > = [J]7 < oe
L9y L 0N )
%:_ﬁz‘l'ﬁS:ﬂl %z_h'l‘)’:s:h
dx 2A 24" dy 2A 2A
Y, _ B Y, _ V2 03 _ B3 03 _ V3
ox  2A° dy 24’ ox 2A° dy 24
NA26018 Finite Element Analysis of Solids and Fluids CMH gmri%mgg?%)mg}—g




Numerical integration

In a general case, the derivatives of y; with respect to the global

coordinates can be computed from the area coordinate (L, L,)
form

0Y; 0y, 0L, N 0y, 0L,
dx 0L, 0x 0L, Ox
d0Y; 0y; 0L, N 0y, 0L,
dy 0L, dy 0L, dy

(94);) (0, [9x  dy ]
ax . -1 aLl . aLl aLl

<a¢i>—[]] <a¢i>,U]— ox  dy

\ayj kaLZJ _aLz aLz_

Note that only L, and L, are treated as linearly independent
coordinates, because L;=1-L,-L,

. . . . MPUTATIONAL MARINE HYDRODYNAMI
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Numerical integration

After transformation, integrals on Q; have the form

jA G, n)dedy = f G (Ly, Ly, L3)dLydL,
Or ar

which can be approximated by the quadrature formula

N
~ 1 ~
jA G (Ll, Lz, L3)dL1dL2 =~ Ez WIG(Sl)
Qr =1

where I/, and S; denote the weights and integration points of the
quadrature rule.

NEXT Table contains the location of integration points and
weights for one-, three-, and seven-point quadrature rules over
triangular elements

. . . . MPUTATIONAL MARINE HYDRODYNAMI
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Numerical integration

a2 B2 P e
25 o [25) Wy F
27 P2 @ 8

Degree of Integration points
Number of polynomial and and weights
integration order of the Geometric
points residual L L> L3 114 Nodes locations
: 2 n [ [
| 12 0h™) 1 3 3 | a &
; () ~! ', a
3 2; O(h*) ! : 0 ',. b
0 1 1 I -
1 | I 27
J 3 3 48 a
25
0.6 0.2 0.2 = b
4 3 O(h*) 0.2 0.6 0.2 = ¢ A ‘\
25
0.2 0.2 0.6 o d \
3 ! L 0.225 a
@ B Bi b
B oy B W ¢
5. Oh®) B Bi o) d I x
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CMH COMPUTATIONAL MARINE HYDRODYNAMICS LAB
SHANGHAI JIAO TONG UNIVERSITY




Modeling considerations

Finite element analysis is a humerical simulation of a physical

process. Therefore, finite element modeling involves assumptions

concerning the representation of the system and/or its behavior.

® Valid assumptions can be made only if we have a qualitative
understanding of how the process or system works

® A good knowledge of the basic principles governing the process
and the finite element theory enable the development of a
good numerical model of the actual process

Here we discuss several aspects of development of finite element
models. Guidelines concerning element geometries, mesh
refinements, and load representations are given

. . . . MPUTATIONAL MARINE HYDRODYNAMI
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Modeling considerations

Element Geometries

Recall that the numerical evaluation of integrals over actual

elements involves a coordinate transformation from the actual

element to a master element

® The transformation is acceptable if and only if every point in
the actual element is mapped uniquely into a point in the
master element, and vice versa. Such mappings are termed
one-to-one. This requirement can be expressed as

J¢ =det[J¢] >0 everywhere in the element Q,

where [/¢] is the Jacobian matrix. Geometrically, the Jacobian
represents the ratio of an area element in the real element to the
corresponding area element in the master element

dA = dxdy = Jdé&dn
NOTE: If j¢ is zero, then a nonzero area element in the real
element is mapped into zero area in the master element, which
Is unacceptable. Also, if j¢ <0, a right-handed coordinate
system is mapped into a left-handed coordinate system

. . . . MPUTATIONAL MARINE HYDRODYNAMI
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Modeling considerations

To ensure j¢ > 0 and keep within the extreme limits of acceptable
distortion, certain geometric shapes of real elements must be
avoided. For example,
® The interior angle at each vertex of a triangular element should

not be equal to either 0° or 180°

Indeed, in practice the angle should reasonably be larger than 0°
and smaller than 180° to avoid numerical ill conditioning of
element matrices. Although the acceptable range depends on the
problem, the range 15°-165° can be used as a guide

. . . . MPUTATIONAL MARINE HYDRODYNAMI
NA26018 Finite Element Analysis of Solids and Fluids CMH SEIANGH% JIAO TONG %ngf‘{“{,



Modeling considerations

e.g. Finite elements with unacceptable vertex angles

Too small /
Too large

Too small

Quadratic triangular elements

CMH COMPUTATIONAL MARINE HYDRODYNAMICS LAB
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Modeling considerations

For higher-order Lagrange elements, the locations of the interior
nodes contribute to the element distortion, and therefore they are
constrained to lie within certain distance from the vertex nodes.

e.g., in the case of a quadratic element, the midside node should
be at a distance not less than one-fourth of the length of the side
from the vertex nodes

.
# 0.25h, ! l _ hy 3 s
P4 \ Range of -
’t Ve Range of nodes Y “‘:::c 5 l 6
0.25h, H 6 and 8 ‘ 0.25h, 8
) | L2 Range of nodes h ;\ vy 58 2
ho P Sand 7 \ ? 7 ¢ ‘ h,—
g .S ! 2 5 * > "‘/I
. ; 0.25h,
le———» ,
h (a) ‘ (b)
Eight node quadratic element and six- The quarter point
node quadratic triangular element quadrilateral element

Range of acceptable locations of the midside nodes for quadratic elements
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Modeling considerations

Mesh Generation

Generation of a finite element mesh for a given problem should

follow the guidelines listed below

1. The mesh should represent the geometry of the
computational domain and load representation accurately

2. The mesh should be such that large gradients in the solution
are adequately represented

3. The mesh should not contain elements with unacceptable
geometries, especially in regions of large gradients

Within the above guidelines, the mesh used can be coarse or
refined, and may consist of one or more orders and types of
elements(e. g, linear and quadratic, triangular and quadrilateral)

. . . . MPUTATIONAL MARINE HYDRODYNAMI
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Modeling considerations

A judicious choice of element order and type could save
computational cost while giving accurate results.

It should be noted that the choice of elements and mesh is
problem-dependent what works well for one problem may not
work well for another problem

An analyst with physical insight into the process being
simulated can make a better choice of elements and mesh for
the problem at hand

We should start with a coarse mesh that meets the three
requirements listed above exploit symmetries available in the
problem, and evaluate the results thus obtained in light of
physical understanding and approximate analytical and/or
experimental information (these results can be used to guide
subsequent mesh refinements and analyses)

. . . . MPUTATIONAL MARINE HYDRODYNAMI
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Modeling considerations

Generation of meshes of single element type is easy because

elements of the same degree are compatible with each other

® Mesh refinements involve several options. Refine the mesh by
subdividing existing elements into two or more elements of
the same type(h-version mesh refinement)

® Alternatively, existing elements can be replaced by elements of
higher order (p-version mesh refinement)

Generally, local mesh refinements should be such that very small
elements are not placed adjacent to very large ones

T T
1 } 4 k P, s 4 s
1 ) 1 V
B N R N T Doy S
1 1 1 ' (b)
+ + + : < > < >
|
AL 2
i

1
e el
1

T T T
B i Tk SEE PR SRR
" :

' T
- 1 -!._-~I-~—-r_. -——r—

h-version p-version
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Modeling considerations

Combining elements of different kinds naturally arises in solid and
structural mechanics problems

E.g., plate bending elements (2-D) can be connected to a beam
element (1-D)

If the plate element is based on the classical plate theory, the
beam element should be one based on the Euler-Bernoulli beam
theory so that they have the same degrees of freedom at the
connecting node. When a plane elasticity element is connected to
a beam element, which are not compatible with the former in
terms of the degrees of freedom at the nodes, we must construct
a special element that makes the transition from the 2-D plane
elasticity element to the 1-D beam element. Such elements are
called transition elements

. . . . MPUTATIONAL MARINE HYDRODYNAMI
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Modeling considerations

Combining elements of different order, say linear to quadratic

elements, may be necessary to accomplish local mesh

refinements. There are two ways to do this.

® One way is to use a transition element, which has different
number of nodes on different sides

® The other way is to impose a condition that constrains the
midside node to have the same value as that experienced at
the node by the lower-order element

T -“; {F O 1?

s bl Transition A

Jnear element ST ¢ Quadratic element §
B L S

use of a transition element that has three sides linear and one side quadratic
o . 2 O— ¢
3 9
Use constraint

Linear element condition Quadratic element ‘Jf

S —O O O~ ©

use of a linear constraint equation to connect a linear side to a quadratic side



Modeling considerations

However, such combinations do not enforce interelement
continuity of the solution along the entire interface. Fig. contains
element connections that do not satisfy the C continuity along the

connecting sides.

u(s) A

1 2
o= Us

: : o0 2. 11, 1
Constraint condition: &= 5, + uy)
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(h)
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(C)

uis) A

- s R
1(2—117—11]
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Modeling considerations

Examples of local mesh refinements

with transition elements (or
when constraint conditions

are imposed) between linear
elements

with compatible (Co-
continuous) elements

(a) (D)

)
Lo}

()
with transition elements between quadratic elements
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