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Numerical integration 

Gauss-Legendre Quadrature

 In the Newton-Cotes quadrature, the base point locations have 
been specified. If the 𝒙𝒍 are not specified, then there will be 𝟐𝒓 +
𝟐 undetermined parameters, 𝒓 + 𝟏 weights wl and 𝒓 + 𝟏 base 
points 𝒙𝒍, which define a polynomial of degree 𝟐𝒓 + 𝟏

 The Gauss-Legendre quadrature is based on the idea that the 
base points xl and the weights w can be chosen so that the 
sum of the 𝒓 + 𝟏 appropriately weighted values of the function 
yields the integral exactly when 𝑭(𝒙) is a polynomial of degree 
𝟐𝒓 + 𝟏 or less

The Gauss-Legendre quadrature formula is given by

 
𝑎

𝑏

𝐹(𝑥)𝑑𝑥 =  
−1

1

 𝐹 (𝜉)𝑑𝜉 ≈ 

I=1

𝑟

 𝐹(𝜉𝐼)𝑤𝐼
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where wl are the weight factors, 𝜉𝐼are the base points [roots of 
the Legendre polynomial 𝑃𝑟+1(𝜉)], and 𝐹 is the transformed 
integrand

where 𝐽 is the Jacobian of the transformation between 𝑥 anbd 𝜉. 
The weight factors and Gauss points for the Gauss-Legendre 
quadrature are given for 𝑟 = 1～6 in Table

 
𝑎

𝑏

𝐹(𝑥)𝑑𝑥 =  
−1

1

 𝐹 (𝜉)𝑑𝜉 ≈ 

𝐼=1

𝑟

 𝐹 (𝜉𝐼)𝑤𝐼

 𝐹(𝜉) = 𝐹(𝑥(𝜉))𝐽(𝜉), 𝑑𝑥 = 𝐽𝑑𝜉



NA26018 Finite Element Analysis of  Solids and Fluids 

Numerical integration 

The Gauss-Legendre quadrature 
is more frequently used than 
the Newton-Cotes quadrature 
because it requires fewer base 
points（hence, a saving in 
computation） to achieve the 
same accuracy
 A polynomial of degree p is 

integrated exactly by 
employing 𝑟 = 0.5(𝑝 + 1) Gauss 
points. When p+1 is odd, one 
should pick the nearest larger 
integer

𝑟 =
1

2
𝑝 + 1
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so that the Gauss-Legendre quadrature can be used to evaluate 
the integral over [−𝟏, 𝟏]. The differential element 𝒅𝒙 in the global 
coordinate system 𝒙 is related to the differential element 𝒅𝝃 in the 
natural coordinate system 𝝃 by

 
𝑥𝑎

𝑥𝑏

𝐹(𝑥)𝑑𝑥 =  
−1

1

 𝐹 𝜉 𝑑𝜉,  𝐹(𝜉)𝑑𝜉 = 𝐹(𝑥(𝜉))𝑑𝑥

𝑑𝑥 =
𝑑𝑥

𝑑𝜉
𝑑𝜉 = 𝐽𝑒𝑑𝜉

𝐽𝑒 =
𝑑𝑥

𝑑𝜉
=

𝑑

𝑑𝜉
 

𝑖=1

𝑚

𝑥𝑖
𝑒  𝜓𝑖

𝑒 = 

𝑖=1

𝑚

𝑥𝑖
𝑒 𝑑

 𝜓𝑖
𝑒

𝑑𝜉

𝑥 = 

𝑖=1

𝑚

𝑥𝑖
𝑒  𝜓𝑖

𝑒(𝜉)
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For example, consider the integral

Using the chain rule of differentiation we have

Since

where

𝐾𝑖𝑗
𝑒 =  

𝑥𝑎

𝑥𝑏

𝑎(𝑥) 𝑑
𝑑𝜓𝑖

𝑒

𝑑𝑥

𝑑𝜓𝑗
𝑒

𝑑𝑥
𝑑𝑥

)𝑑𝜓𝑖
𝑒(𝑥

𝑑𝑥
=

)𝑑𝜓𝑖
𝑒(𝜉

𝑑𝜉

𝑑𝜉

𝑑𝑥
= 𝐽−1

)𝑑𝜓𝑖
𝑒(𝜉

𝑑𝜉

𝑥 = 

𝑖=1

𝑚

𝑥𝑖
𝑒  𝜓𝑖

𝑒 𝑑𝑥 =
𝑑𝑥

𝑑𝜉
𝑑𝜉 = 𝐽𝑒𝑑𝜉

𝐾𝑖𝑗
𝑒 =  

−1

1

𝑎(𝑥(𝜉))
1

𝐽

𝑑𝜓𝑖
𝑒

𝑑𝜉

1

𝐽

𝑑𝜓𝑗
𝑒

𝑑𝜉
𝐽𝑑𝜉 ≈ 

𝐼=1

𝑟

 𝐹𝑖𝑗
𝑒(𝜉𝐼)𝑤𝐼

 𝐹𝑖𝑗
𝑒 = 𝑎

1

𝐽

𝑑𝜓𝑖
𝑒

𝑑𝜉

𝑑𝜓𝑗
𝑒

𝑑𝜉
, 𝐽 = 

𝑖=1

𝑚

𝑥𝑖
𝑒 𝑑

 𝜓𝑖
𝑒

𝑑𝜉
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Determine the exact number of Gauss points required to evaluate 
the following element coefficients

A polynomial of degree p is 
integrated exactly by 
employing 𝑟 = 0.5(𝑝 + 1) Gauss 
points.𝑓𝑖

𝑒 =  
𝑥𝑎

𝑥𝑏

𝜓𝑖
𝑒𝑑𝑥 =  

−1

+1

𝜓𝑖
𝑒(𝜉)𝐽𝑑𝜉 ≡  

−1

+1

𝐺𝑖𝑗
𝐹 (𝜉)𝑑𝜉

≈ 

𝐼=1

𝑁F

𝐺𝑖𝑗
𝐹 (𝜉𝐼)𝑊𝐼

𝑀𝑖𝑗
𝑒 =  

𝑥𝑎

𝑥𝑏

𝜓𝑖
𝑒𝜓𝑗

𝑒𝑑𝑥 =  
−1

+1

𝜓𝑖
𝑒(𝜉)𝜓𝑗

𝑒(𝜉)𝐽𝑑𝜉 ≡  
−1

+1

𝐺𝑖𝑗
𝑀(𝜉)𝑑𝜉

≈ 

𝐼=1

𝑁𝑀

𝐺𝑖𝑗
𝑀(𝜉𝐼)𝑊𝐼

≈ 

𝐼=1

𝑁𝐾

𝐺𝑖𝑗
𝐾(𝜉𝐼)𝑊𝐼

𝐾𝑖𝑗
𝑒 =  

𝑥𝑎

𝑥𝑏 𝑑𝜓𝑖
𝑒

𝑑𝑥

𝑑𝜓𝑗
𝑒

𝑑𝑥
𝑑𝑥 =  

−1

+1𝑑𝜓𝑖
𝑒

𝑑𝜉

𝑑𝜓𝑗
𝑒

𝑑𝜉
(𝐽)−2𝐽𝑑𝜉 ≡  

−1

+1

𝐺𝑖𝑗
𝐾(𝜉)𝑑𝜉
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Integration over a Master Rectangular Element

Quadrature formulas for integrals defined over a rectangular 

master element  𝛺𝑅 can be derived from the one-dimensional 
quadrature formulae. We have

where 𝑴 and 𝑵 denote the number of quadrature points in the 𝜉

and 𝜂 directions, (𝜉𝐼 , 𝜂𝐽）denote the Gauss points, and 𝑊𝐼 and 𝑊𝐽, 
denote the corresponding Gauss weights

 
 Ω𝑅

𝐹(𝜉, 𝜂)𝑑𝜉𝑑𝜂 =  
−1

1

 
−1

1

F(𝜉, 𝜂)𝑑𝜂 𝑑𝜉 ≈  
−1

1

 

𝐽=1

𝑁

𝐹(𝜉, 𝜂𝐽)𝑊𝐽 𝑑𝜉

≈ 

𝐼=1

𝑀

 

𝐽=1

𝑁

𝐹(𝜉𝐼 , 𝜂𝐽)𝑊𝐼𝑊𝐽
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The selection of the number of Gauss points is based on the 
same formula as that given in 1-D

A polynomial of degree p is integrated exactly employing 𝑁 =
𝑖𝑛𝑡[0.5(𝑝 + 1)]. In most cases, the interpolation functions are of 
the same degree in both 𝜉 and 𝜂, and therefore 𝑀 = 𝑁. When the 
integrand is of different degree in 𝜉 and 𝜂, the number of Gauss 
points is selected on the basis of the largest-degree polynomial

 
 Ω𝑅

𝐹(𝜉, 𝜂)𝑑𝜉𝑑𝜂 =  
−1

1

 
−1

1

F(𝜉, 𝜂)𝑑𝜂 𝑑𝜉 ≈  
−1

1

 

𝐽=1

𝑁

𝐹(𝜉, 𝜂𝐽)𝑊𝐽 𝑑𝜉

≈ 

𝐼=1

𝑀

 

𝐽=1

𝑁

𝐹(𝜉𝐼 , 𝜂𝐽)𝑊𝐼𝑊𝐽
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The maximum degree of the polynomial refers to 
the degree of the highest polynomial in 𝜉 or 𝜂 in the 
integrands of the element matrices 
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The 𝑁 × 𝑁 gauss point locations are given by the tensor product 
of one-dimensional Gauss points 𝜉𝑖

𝜉1
𝜉2
⋮
𝜉𝑁

{𝜉1, 𝜉2, … , 𝜉𝑁} ≡

𝜉1, 𝜉1 𝜉1, 𝜉2 … 𝜉1, 𝜉𝑁
𝜉2, 𝜉1 ⋱ ⋮
⋮

𝜉𝑁, 𝜉1 … 𝜉𝑁, 𝜉𝑁
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Example

Consider the quadrilateral element Ω𝟏. We wish to evaluate a 
𝜕Ψ𝒊/𝜕𝑥 and 𝜕Ψ𝒊/𝜕𝑦 at (𝜉, 𝜂)=(0,0) using the isoparametric 
formulation

Ψ1 =
1

4
1 − 𝜉 1 − 𝜂

Ψ2 =
1

4
1 + 𝜉 1 − 𝜂

Ψ3 =
1

4
1 + 𝜉 1 + 𝜂

Ψ4 =
1

4
1 − 𝜉 1 + 𝜂
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Recall that,
𝜕𝑥

𝜕𝜉
= 

𝑗=1

𝑚

𝑥𝑗
𝜕  𝜓𝑗

𝑒

𝜕𝜉
,

𝜕𝑦

𝜕𝜉
= 

𝑗=1

𝑚

𝑦𝑗
𝜕  𝜓𝑗

𝑒

𝜕𝜉

𝜕𝑥

𝜕𝜂
= 

𝑗=1

𝑚

𝑥𝑗
𝜕  𝜓𝑗

𝑒

𝜕𝜂
,

𝜕𝑦

𝜕𝜂
= 

𝑗=1

𝑚

𝑦𝑗
𝜕  𝜓𝑗

𝑒

𝜕𝜂

[𝐽] =

𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉
𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜂

=

 

𝑖=1

𝑚

𝑥𝑖
𝜕  𝜓𝑖

𝜕𝜉
 

𝑖=1

𝑚

𝑦𝑖
𝜕  𝜓𝑖

𝜕𝜉

 

𝑖=1

𝑚

𝑥𝑖
𝜕  𝜓𝑖

𝜕𝜂
 

𝑖=1

𝑚

𝑦𝑖
𝜕  𝜓𝑖

𝜕𝜂

=

𝜕  𝜓1
𝜕𝜉

𝜕  𝜓2

𝜕𝜉
⋯

𝜕  𝜓𝑚
𝜕𝜉

𝜕  𝜓1
𝜕𝜂

𝜕  𝜓2

𝜕𝜂
⋯

𝜕  𝜓𝑚
𝜕𝜂

𝑥1 𝑦1
𝑥2 𝑦2
⋮ ⋮
𝑥𝑚 𝑦𝑚
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The inverse of the Jacobian matrix is given by

𝐽 =

𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉
𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜂

=
1

4

− 1 − 𝜂 1 − 𝜂

− 1 − 𝜉 − 1 + 𝜉

1 + 𝜂 − 1 + 𝜂
1 + 𝜉 1 − 𝜉

0.0 0.0
2.0 0.0
2.0 3.0
0.0 5.0

=
1 −

1

2
1 + 𝜂

0
1

2
4 − 𝜉

𝐽 −1 =

1
1 + 𝜂

4 − 𝜉

0
2

4 − 𝜉

, 𝐽11
∗ = 1, 𝐽21

∗ = 0, 𝐽12
∗ =

1 + 𝜂

4 − 𝜉
, 𝐽22

∗ =
2

4 − 𝜉
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Recall that,

with 

Ψ1 =
1

4
1 − 𝜉 1 − 𝜂

Ψ2 =
1

4
1 + 𝜉 1 − 𝜂

Ψ3 =
1

4
1 + 𝜉 1 + 𝜂

Ψ4 =
1

4
1 − 𝜉 1 + 𝜂

𝜕𝜓𝑖

𝜕𝑥
=
𝜕𝜓𝑖

𝜕𝜉
+
1 + 𝜂

4 − 𝜉

𝜕𝜓𝑖

𝜕𝜂
,

𝜕𝜓𝑖

𝜕𝑦
=

2

4 − 𝜉

𝜕𝜓𝑖

𝜕𝜂

𝜓𝑖 =
1

4
1 + 𝜉𝜉𝑖 1 + 𝜂𝜂𝑖 ,

𝜕𝜓𝑖

𝜕𝜉
=
1

4
𝜉𝑖 1 + 𝜂𝜂𝑖 ,

𝜕𝜓𝑖

𝜕𝜂
=
1

4
𝜂𝑖 1 + 𝜉𝜉𝑖

𝜕𝜓𝑖
𝑒

𝜕𝑥
𝜕𝜓𝑖

𝑒

𝜕𝑦

= 𝐽 −1

𝜕𝜓𝑖
𝑒

𝜕𝜉

𝜕𝜓𝑖
𝑒

𝜕𝜂
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Thus, 
𝜕𝜓𝑖

𝜕𝑥
and 

𝜕𝜓𝑖

𝜕𝑦
at (𝜉, 𝜂)=(0,0) is 

𝜕𝜓𝑖

𝜕𝑥
=
1

4
𝜉𝑖 1 + 𝜂𝜂𝑖 +

1

4

1 + 𝜂

4 − 𝜉
𝜂𝑖 1 + 𝜉𝜉𝑖

𝜕𝜓𝑖

𝜕𝑦
=
1

4

2

4 − 𝜉
𝜂𝑖 1 + 𝜉𝜉𝑖

𝜕𝜓𝑖

𝜕𝑥
=

1

4
𝜉𝑖 +

1

16
𝜂𝑖 ,      

𝜕𝜓𝑖

𝜕𝑦
=

1

8
𝜂𝑖
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Example
Consider the quadrilateral element in Fig. We wish to compute 
the following element matrices using the Gauss Legendre 
quadrature

The transformation equations are

𝑆𝑖𝑗
00 =  

Ω

𝜓𝑖𝜓𝑗𝑑𝑥𝑑𝑦, 𝑆𝑖𝑗
11 =  

Ω

𝜕𝜓𝑖

𝜕𝑥

𝜕𝜓𝑗

𝜕𝑥
𝑑𝑥𝑑𝑦

𝑆𝑖𝑗
22 =  

Ω

𝜕𝜓𝑖

𝜕𝑦

𝜕𝜓𝑗

𝜕𝑦
𝑑𝑥𝑑𝑦, 𝑆𝑖𝑗

12 =  
Ω

𝜕𝜓𝑖

𝜕𝑥

𝜕𝜓𝑗

𝜕𝑦
𝑑𝑥𝑑𝑦

𝑥 = 0 ∙  𝜓1 + 5  𝜓1 + 4  𝜓3 + 1 ∙  𝜓4 =
1

4
10 + 8𝜉 − 2𝜉𝜂

𝑦 = 0 ∙  𝜓1 − 1 ∙  𝜓2 + 5  𝜓3 + 4  𝜓4 =
1

4
8 + 10𝜂 + 2𝜉𝜂
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The jacobian matrix and its inverse are

𝐽 =

𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉
𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜂

=
1

4

8 − 2𝜂 2𝜂
−2𝜉 10 + 2𝜉

, 𝐽 =
1

4
4 − 𝜂 5 + 𝜉 + 𝜉𝜂 =

1

4
20 + 4𝜉 − 5𝜂

𝐽 −1 =
1

4𝐽

10 + 2𝜉 −2𝜂
2𝜉 8 − 2𝜂

, 𝐽11
∗ =

10 + 2𝜉

20 + 4𝜉 − 5𝜂
, 𝐽12

∗ =
2𝜂

20 + 4𝜉 − 5𝜂
,

𝐽21
∗ =

2𝜉

20 + 4𝜉 − 5𝜂
, 𝐽22

∗ =
8 − 2𝜂

20 + 4𝜉 − 5𝜂
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The matrix [𝐽] transforms base vectors  𝑒𝑥=(1, 0) and  𝑒𝑥=(0, 1) in 

the 𝑥 − 𝑦 system to the base vectors  𝑒ξ and  𝑒𝜂 in the 𝜉 − 𝜂 system,

Hence, the area element dxdy in the 𝑥 − 𝑦 system is related to the 
area element 𝑑𝜉 𝑑𝜂 in the 𝜉 − 𝜂 system by

1

4

8 − 2𝜂 2𝜂
−2𝜉 10 + 2𝜉

1
0

=
1

4

8 − 2𝜂
2𝜂

,
1

4

8 − 2𝜂 2𝜂
−2𝜉 10 + 2𝜉

0
1

=
1

4

−2𝜉
10 + 2𝜉

 𝑒𝜉 =
1

4
8 − 2𝜂  𝑒𝑥 + 2𝜂  𝑒𝑦 ,  𝑒𝜂 =

1

4
−2𝜉  𝑒𝑥 + 10 + 2𝜉  𝑒𝑦

𝑑𝑥𝑑𝑦 =
1

16

8 − 2𝜂 −2𝜉
2𝜂 10 + 2𝜉

𝑑𝜉𝑑𝜂 = 𝐽𝑑𝜉𝑑𝜂
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The coefficients 𝑆𝑖𝑗
00 and 𝑆𝑖𝑗

11, can be expressed in natural 
coordinates (for numerical evaluation) as

Recall in last Example, 

Note that the integrand of polynomial of the order 𝑝 = 3 in each 

coordinate 𝜉 and 𝜂. Hence. 𝑁 = 𝑀 = 0.5(𝑝 + 1) = 2 will evaluate 𝑆𝑖𝑗
exactly

𝑆𝑖𝑗
00 =  

Ω

𝜓𝑖𝜓𝑗𝑑𝑥𝑑𝑦 =  
−1

1

 
−1

1

𝜓𝑖𝜓𝑗𝐽𝑑𝜉𝑑𝜂

𝑆𝑖𝑗
11 =  

Ω

𝜕𝜓𝑖

𝜕𝑥

𝜕𝜓𝑗

𝜕𝑥
𝑑𝑥𝑑𝑦 =  

−1

1

 
−1

1

𝐽11
∗
𝜕𝜓𝑖

𝜕𝜉
+ 𝐽12

∗
𝜕𝜓𝑖

𝜕𝜂
𝐽11
∗
𝜕𝜓𝑗

𝜕𝜉
+ 𝐽12

∗
𝜕𝜓𝑗

𝜕𝜂
𝐽𝑑𝜉𝑑𝜂

𝜓𝑖 =
1

4
1 + 𝜉𝜉𝑖 1 + 𝜂𝜂𝑖 ,

𝜕𝜓𝑖

𝜕𝜉
=
1

4
1 + 𝜂𝜂𝑖 ,

𝜕𝜓𝑖

𝜕𝜂
=
1

4
𝜂𝑖 1 + 𝜉𝜉𝑖
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where 𝜉𝑖 and 𝜂𝑖 are the Gauss points

𝜉1, 𝜂2 = −
1

3
,
1

3
, (𝜉2, 𝜂2) =

1

3
,
1

3
(𝜉1, 𝜂1) = −

1

3
,
1

3
, (𝜉2, 𝜂1) =

1

3
, −

1

3

𝑆11
00 =  

Ω

𝜓1𝜓1𝑑𝑥𝑑𝑦 =  
−1

1

 
−1

1

𝜓1𝜓1𝐽𝑑𝜉𝑑𝜂

=
1

64
 
−1

1

 
−1

1

(1 − 𝜉)2(1 − 𝜂)2(20 + 4𝜉 − 5𝜂)𝑑𝜉𝑑𝜂

=
1

64
 

𝑖,𝑗=1

2

1 − 𝜉1
2 1 − 𝜂1

2(20 + 4𝜉1 − 5𝜂1)

=
1

64
 1 +

1

3

4

20 −
4

3
+

5

3
+ 1 +

1

3

2

1 −
1

3

2

20 −
4

3
−

5

3

=
1

64

1120

9
+
160

9
+

32

3 3
(−

4

3
+

5

3
) =

1312

576
= 2.27778

𝑠11
00
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By using 2 point Gauss integration, 

𝑆𝑖𝑗
11 =  

Ω

𝜕𝜓1
𝜕𝑥

𝜕𝜓2

𝜕𝑥
𝑑𝑥𝑑𝑦

=  
−1

1

 
−1

1

𝐽11
∗
𝜕𝜓1
𝜕𝜉

+ 𝐽12
∗
𝜕𝜓2

𝜕𝜂
𝐽11
∗
𝜕𝜓1
𝜕𝜉

+ 𝐽12
∗
𝜕𝜓2

𝜕𝜂
𝐽𝑑𝜉𝑑𝜂

=
1

64
 
−1

1

 
−1

1

− 10 + 2𝜉 1 − 𝜂 + 2𝜂 1 − 𝜉 10 + 2𝜉 1 − 𝜂 + 2𝜂 1 − 𝜉

=
1

64
 
−1

1

 
−1

1

− 10 + 2𝜉 2 1 − 𝜂 2 + 4𝜂2 1 − 𝜉 2
1

20 + 4𝜉 − 5𝜂
𝑑𝜉𝑑𝜂

×
1

20 + 4𝜉 − 5𝜂
𝑑𝜉𝑑𝜂

𝑆12
11 =

1

64
 
−1

1

 
−1

1

− 10 + 2𝜉 2 1 − 𝜂 2 + 4𝜂2 1 − 𝜉 2
1

20 + 4𝜉 − 5𝜂
𝑑𝜉𝑑𝜂

≈  

𝑖,𝑗=1

2

− 10 + 2𝜉𝑖
2 1 − 𝜂𝑗

2
+ 4𝜂𝑗

2 1 − 𝜉𝑖
2

1

64 20 + 4𝜉𝑖 − 5𝜂𝑗
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Integration over a Master Triangular Element
In the preceding section we discussed numerical integration on 
quadrilateral elements that can be used to represent very general 
geometries as well as field variables in a variety of problems

Here we discuss numerical integration on triangular elements

 Master triangular elements can be obtained in a natural way 
from associated master rectangular elements 

Since quadrilateral elements can be geometrically distorted, it is possible 
to distort a quadrilateral element to obtain a required triangular element 
by moving the position of the corner nodes to one of the neighboring 
nodes. In actual computation, this is achieved by assigning the same 
global node number to two corner nodes of the quadrilateral element
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We choose the unit right isosceles triangle as the master 
element
An arbitrary triangular element Ω𝒆 can be generated from the master 
triangular element  Ω𝑻 by transformation

 The coordinate lines 𝜉 = 0 and 𝜂 = 0 in  Ω𝑻 correspond to the 
skew curvilinear coordinate lines 1-3 and 1-2 in Ω𝒆

For the 3-node triangular element, the transformation is taken 
to be

𝑥 = 

𝑖=1

3

 𝑥𝑖  𝜓𝑖(𝜉, 𝜂 , 𝑦 = 

𝑖=1

3

 𝑦𝑖  𝜓𝑖(𝜉, 𝜂

 𝜓1 = 1 − 𝜉 − 𝜂,  𝜓2 = 𝜉,  𝜓3= 𝜂
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The inverse transformation from element Ω𝒆 to  Ω𝑻 is given by

where A is the area of Ω𝒆

The Jacobian matrix for the linear triangular element is given by

𝜉 =
1

2𝐴
(𝑥 − 𝑥1)(𝑦3 − 𝑦1) − (𝑦 − 𝑦1)(𝑥3 − 𝑥1)

𝜂 =
1

2𝐴
(𝑥 − 𝑥1)(𝑦1 − 𝑦2) + (𝑦 − 𝑦1)(𝑥2 − 𝑥1)

𝐽 −1 =
𝑥2 − 𝑥1 𝑦2 − 𝑦1
𝑥3 − 𝑥1 𝑦3 − 𝑦1

=
𝛾3 −𝛽3
−𝛾2 𝛽2

𝐽 −1 =
1

𝐽

𝛽2 𝛽3
𝛾2 𝛾3

, 𝐽 = 𝛽2𝛾3 − 𝛾2𝛽3 = 2𝐴

 

𝛼𝑖 = 𝑥𝑗𝑦𝑘 − 𝑥𝑘𝑦𝑗
𝛽𝑖 = 𝑦𝑗 − 𝑦𝑘

 𝛾𝑖 = −(𝑥𝑗 − 𝑥𝑘

(𝑖 ≠ 𝑗 ≠ 𝑘; 𝑖, 𝑗, and 𝑘 permute in a natural order）
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Recall that,  𝜓1 = 1 − 𝜉 − 𝜂,  𝜓2 = 𝜉,  𝜓3 = 𝜂

𝜕𝜓𝑖
𝑒

𝜕𝑥
𝜕𝜓𝑖

𝑒

𝜕𝑦

= 𝐽 −1

𝜕𝜓𝑖
𝑒

𝜕𝜉

𝜕𝜓𝑖
𝑒

𝜕𝜂

𝜕𝜓1
𝜕𝑥

= −
𝛽2 + 𝛽3
2𝐴

=
𝛽1
2𝐴

,
𝜕𝜓1
𝜕𝑦

= −
𝛾2 + 𝛾3
2𝐴

=
𝛾1
2𝐴

𝜕𝜓2

𝜕𝑥
=
𝛽2
2𝐴

,
𝜕𝜓2

𝜕𝑦
=
𝛾2
2𝐴

,
𝜕𝜓3

𝜕𝑥
=
𝛽3
2𝐴

,
𝜕𝜓3

𝜕𝑦
=
𝛾3
2𝐴
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In a general case, the derivatives of 𝜓𝑖 with respect to the global 
coordinates can be computed from the area coordinate (𝐿1, 𝐿𝟐) 
form

Note that only 𝐿1 and 𝐿𝟐 are treated as linearly independent 
coordinates, because 𝐿𝟑=1-𝐿1-𝐿𝟐

𝜕𝜓𝑖

𝜕𝑥
=
𝜕𝜓𝑖

𝜕𝐿1

𝜕𝐿1
𝜕𝑥

+
𝜕𝜓𝑖

𝜕𝐿2

𝜕𝐿2
𝜕𝑥

𝜕𝜓𝑖

𝜕𝑦
=
𝜕𝜓𝑖

𝜕𝐿1

𝜕𝐿1
𝜕𝑦

+
𝜕𝜓𝑖

𝜕𝐿2

𝜕𝐿2
𝜕𝑦

𝜕𝜓𝑖

𝜕𝑥
𝜕𝜓𝑖

𝜕𝑦

= 𝐽 −1

𝜕𝜓𝑖

𝜕𝐿1
𝜕𝜓𝑖

𝜕𝐿2

, [𝐽] =

𝜕𝑥

𝜕𝐿1

𝜕𝑦

𝜕𝐿1
𝜕𝑥

𝜕𝐿2

𝜕𝑦

𝜕𝐿2
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which can be approximated by the quadrature formula

After transformation, integrals on  Ω𝑇 have the form

where 𝑊𝐼, and 𝑆𝑙 denote the weights and integration points of the 
quadrature rule. 

NEXT Table contains the location of integration points and 
weights for one-, three-, and seven-point quadrature rules over 
triangular elements

 
 Ω𝑇

𝐺(𝜉, 𝜂)𝑑𝜉𝑑𝜂 =  
 Ω𝑇

 𝐺 (𝐿1, 𝐿2, 𝐿3)𝑑𝐿1𝑑𝐿2

 
 Ω𝑇

 𝐺 (𝐿1, 𝐿2, 𝐿3)𝑑𝐿1𝑑𝐿2 ≈
1

2
 

𝒍=𝟏

𝑵

𝑊𝐼
 𝐺(𝑆𝑙)
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Modeling considerations

Finite element analysis is a numerical simulation of a physical 
process. Therefore, finite element modeling involves assumptions 
concerning the representation of the system and/or its behavior. 
 Valid assumptions can be made only if we have a qualitative 

understanding of how the process or system works
 A good knowledge of the basic principles governing the process 

and the finite element theory enable the development of a 
good numerical model of the actual process 

Here we discuss several aspects of development of finite element 
models. Guidelines concerning element geometries, mesh 
refinements, and load representations are given
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Element Geometries

Recall that the numerical evaluation of integrals over actual 
elements involves a coordinate transformation from the actual 
element to a master element
 The transformation is acceptable if and only if every point in 

the actual element is mapped uniquely into a point in the 
master element, and vice versa. Such mappings are termed 
one-to-one. This requirement can be expressed as 

where [𝐽𝑒] is the Jacobian matrix. Geometrically, the Jacobian 
represents the ratio of an area element in the real element to the 
corresponding area element in the master element 

NOTE: If 𝐽𝑒 is zero, then a nonzero area element in the real 
element is mapped into zero area in the master element, which 
is unacceptable. Also, if 𝐽𝑒 < 0， a right-handed coordinate 
system is mapped into a left-handed coordinate system

𝐽𝑒 ≡ de t[ 𝐽𝑒] > 0 everywhere in the element 𝛀𝒆

𝑑𝐴 ≡ 𝑑𝑥𝑑𝑦 = 𝐽𝑒𝑑𝜉𝑑𝜂
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To ensure 𝐽𝑒 > 0 and keep within the extreme limits of acceptable 
distortion, certain geometric shapes of real elements must be 
avoided. For example, 
 The interior angle at each vertex of a triangular element should 

not be equal to either 0° or 180°

Indeed, in practice the angle should reasonably be larger than 0°
and smaller than 180° to avoid numerical ill conditioning of 
element matrices. Although the acceptable range depends on the 
problem, the range 15°-165° can be used as a guide
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e.g. Finite elements with unacceptable vertex angles

Linear quadrilateral elements

Linear triangular elements

Quadratic triangular elements
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For higher-order Lagrange elements, the locations of the interior 
nodes contribute to the element distortion, and therefore they are 
constrained to lie within certain distance from the vertex nodes. 

e.g., in the case of a quadratic element, the midside node should 
be at a distance not less than one-fourth of the length of the side 
from the vertex nodes

Range of acceptable locations of the midside nodes for quadratic elements

Eight node quadratic element and six-
node quadratic triangular element

The quarter point 
quadrilateral element
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Mesh Generation 

Generation of a finite element mesh for a given problem should 
follow the guidelines listed below
1. The mesh should represent the geometry of the 

computational domain and load representation accurately
2. The mesh should be such that large gradients in the solution 

are adequately represented
3. The mesh should not contain elements with unacceptable 

geometries, especially in regions of large gradients

Within the above guidelines, the mesh used can be coarse or 
refined, and may consist of one or more orders and types of 
elements(e. g, linear and quadratic, triangular and quadrilateral)
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A judicious choice of element order and type could save 
computational cost while giving accurate results. 

 It should be noted that the choice of elements and mesh is 
problem-dependent what works well for one problem may not 
work well for another problem

 An analyst with physical insight into the process being 
simulated can make a better choice of elements and mesh for 
the problem at hand

 We should start with a coarse mesh that meets the three 
requirements listed above exploit symmetries available in the 
problem, and evaluate the results thus obtained in light of 
physical understanding and approximate analytical and/or 
experimental information (these results can be used to guide 
subsequent mesh refinements and analyses)
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Generation of meshes of single element type is easy because 
elements of the same degree are compatible with each other
 Mesh refinements involve several options. Refine the mesh by 

subdividing existing elements into two or more elements of 
the same type(h-version mesh refinement)

 Alternatively, existing elements can be replaced by elements of 
higher order (p-version mesh refinement)

Generally, local mesh refinements should be such that very small 
elements are not placed adjacent to very large ones

h-version p-version 
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Combining elements of different kinds naturally arises in solid and 
structural mechanics problems

E.g., plate bending elements （2-D） can be connected to a beam 
element（1-D）

If the plate element is based on the classical plate theory, the 
beam element should be one based on the Euler-Bernoulli beam 
theory so that they have the same degrees of freedom at the 
connecting node. When a plane elasticity element is connected to 
a beam element, which are not compatible with the former in 
terms of the degrees of freedom at the nodes, we must construct 
a special element that makes the transition from the 2-D plane 
elasticity element to the 1-D beam element. Such elements are 
called transition elements 
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Combining elements of different order, say linear to quadratic 
elements, may be necessary to accomplish local mesh 
refinements. There are two ways to do this. 
 One way is to use a transition element, which has different 

number of nodes on different sides 
 The other way is to impose a condition that constrains the 

midside node to have the same value as that experienced at 
the node by the lower-order element 

use of a transition element that has three sides linear and one side quadratic

use of a linear constraint equation to connect a linear side to a quadratic side
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However, such combinations do not enforce interelement 
continuity of the solution along the entire interface. Fig. contains 
element connections that do not satisfy the C continuity along the 
connecting sides.
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Examples of local mesh refinements

with compatible（Co-
continuous）elements

with transition elements（or 
when constraint conditions 
are imposed） between linear 
elements

with transition elements between quadratic elements 
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