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Introduction

® Interpolation functions for the basic elements
® Isoparametric element and coordinate transformation

® Numerical integration and modeling considerations
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Introduction

In the previous courses, we studied the finite element
analysis of second-order equation and its analogues in the
fields of heat transfer, solid mechanics

As part of this study, we developed the interpolation
functions for the basic elements, namely, the linear
triangular and rectangular elements

These elements, which were developed in connection with
the finite element analysis of a second-order partial
differential equation in a single variable, are useful in all
finite element models that admit Lagrange interpolation of
the primary variables of the weak formulation

If a library of interpolation functions is available, then we can
select admissible functions for the model from the library
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Objectives

® The objective of this course is to develop a library of two-
dimensional triangular and rectangular elements of the
Lagrange family (i. e, elements over which only the function
not its derivativesare interpolated) The Hermite cubic
interpolation functions are also presented, without a
derivation, for the sake of completeness and reference

® The regularly shaped elements, called master elements, for
which interpolation functions are developed here can be
used for numerical evaluation of integrals defined on
irregular elements, this requires a transformation of the
geometry from the actual element shape to an associated
master element

Once we have elements of different shapes and order at our
disposal, we can choose appropriate elements and associated
interpolation functions for a given problem
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Element types

Triangular Elements

The linear (three-node) triangular element was developed in last
course

Higher-order triangular elements (i.e, triangular elements with
interpolation functions of higher degree) can be systematically
developed with the help of the so-called Pascal’s triangle, which
contains the terms of polynomials of various degrees in the two
coordinates x and y, as shown in Fig.
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Element types

Here x and y denote some local coordinates; they do not, in
general represent the global coordinates of the problem. We can
view the position of the terms as the nodes of the triangle

Pascal’s tnangle Degree of Number of Element with
the complete terms in the nodes
polynomial polynomial
l b l £\
the constant
- | ) ii term, the first
and last terms

73 1 , of a given row
X Xy ) - O being the
‘ | vertices of the
2 & of # ; 10 \ triangle
* Py A 4 15 A

I 3 B % 8 . ' :
2 Xy 9 2 oy d 21 (Figure not shown)
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Element types

Of course, the shape of the triangle is arbitrary--not necessarily
an equilateral triangle, as might appear from the position of the
terms in Pascal's triangle

For example, a triangular element of order 2 (i.e, the degree of
the polynomial is 2) contains six nodes, as can be seen from the
third row of Pascal’s triangle. The position of the six nodes in the
triangle is at the three vertices and at the midpoints of the three
sides. The polynomial involves six constants, which can be
expressed in terms of the nodal values of the variable being

interpolated as 6
u= Z u;(x,y)

i=1
Pascal’s triangle Degree of Number of Element with
the complete terms in the nodes
polynomial polynomial

o

—>D
x* xy V2 ‘ 6
A
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Element types

6
u = 2 uilpl’(x,Y)
=1
where y; are the quadratic interpolation functions obtained
following the same procedure as that used for the linear element.

In general, a pth-order triangular element has a number of n
nodes

1
=@+ D/ +2)

and a complete polynomial of pth degree is given by

n
u(x,y) = z a;x"ys = z wjpj, r+s<p
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Element types

® The location of the entries in Pascals triangle gives a
symmetric location of nodal points in elements that will
produce exactly the right number of nodes to define a
Lagrange interpolation of any degree

® It should be noted that the Lagrange family of triangular
elements (of order greater than zero) should be used for
second-order problems that require only the dependent
variables (not their derivatives) of the problem to be
continuous at interelement boundaries

® It can be easily seen that the pth-degree polynomial
associated with the pth-order Lagrange element, when
evaluated on the boundary of the element, yields a pth-
degree polynomial in the boundary coordinate
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Element types

For example, the quadratic polynomial associated with the
quadratic (six-node) triangular element shown in Fig. is given

by u(x,y) = a; + ayx + azy + a,xy + asx? + agy?
The derivatives of ue are

ou® ou®
P =a, + a,y + 2asx, dy

= az + azx + 2agy

The element shown in Fig. is an arbitrary quadratic triangular
element.
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Element types

® By rotating and translating the (x,y) coordinate system, we
obtain the (s,t) coordinate system

® Since the transformation from the (x,y) system to the (s,t)
system involves only rotation (which is linear) and
translation, a kth-degree polynomial in the (x,y) coordinate
system is still a kth-degree polynomial in the (s,t) system

ub(s,t) = a, + a,s + dst + dust + dss? + dgt?

where g;, (i = 1,2,...,6) are constants that depend on qg;, and the
angle of rotation «. Now by setting t = 0, we get the restriction
of u to side 1-2-3 of element Q¢

ué(s,t) = 4, + a,s + dgs?

which is a quadratic
polynomial in s

4]
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Element types

If a neighboring element O/ has its side 5-4-3 in common with
side 1-2-3 of element (¢, then the function u on side 5-4-3 of
element ¢/ also a quadratic polynomial

uf(s,0) = by + bys + bgs?

Since the polynomials are uniquely defined by the same nodal

values U1=uf=u£, U, =u§=u£, and U, =u3=u§, we have u° (s,0)

=u’ (s5,0) and hence the function u is uniquely defined on the
interelement boundary of elements ¢ and f

The ideas discussed above can be easily 5 B el B
extended to three dimensions, in which N

case Pascal’'s triangle takes the form of a 136 '
Christmas tree and the elements are of a
pyramid shape, called tetrahedral elements

0O
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Element types

The alternative derivation of the interpolation functions for the
higher-order Lagrange family of triangular elements is simplified
by use of the area coordinates L;

For triangular elements it is possible to construct three non-
dimensionalized coordinates L; (i = 1, 2,3) that relate respectively
to the sides directly opposite nodes 1, 23and 3 such that

A;
Li = — A=2Al
A i=1

where A is the area of the triangle formed by nodes j and k and
an arbitrary point P in the element, and 4 is the total area of the
element

For example, A, is the area of the
shaded triangle, which is formed by
nodes 2 and 3 and point P. The point P
, Is at a perpendicular distance of s from
f the side connecting nodes 2 and 3. We
./ have 4; = 0.5bs and A = 0.5bh Hence,
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Element types

_A_s
h=7=r

Clearly, L, is zero on side 2-3 (hence, zero at nodes 2 and 3) and

has a value of unity at node 1. Thus, L, is the interpolation

function associated with node 1. Similarly, L, and L; are the

interpolation functions associated with nodes 2 and 3,

respectively. In summary, we have
Y =L

for a linear triangular element. We
shall use L; to construct interpolation
functions for higher-order triangular
elements

h

Y
P~
L
=
\\ \
-
\\
. Se
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Element types

Consider a higher-order element with k£ nodes (equally spaced)
per side. Then total number of nodes in the element is given by
k-1

=Y k—i)=k+ (k = Lk
n—;( —D=k+ (k=D 4+ 1=Sk(k+ 1)

the degree of the interpolation functions is equal to k — 1. For
example, for the quadratic elementwe have k-l =2andn=6

Let the corner (i. e, vertex) nodes
be denoted by I/, ] and K, and let

h; be the perpendicular distance of
the node from the side connecting
J and K L=0 line

Ly=0line | 4 s50=10

P k-1
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Element types

Then the distance sp to the pth row parallel to side J — K (under
the assumption that the nodes are equally spaced along the
sides and the rows) is given in nondimensional form by

p
Sp=m, SO=O, Sk—1=1

The interpolation function y; should be zero at the nodes on the
lines L,=0,1/(k—-1),..,p/(k—1) (p =0,1, ...,k — 2), and y, should be
equal to 1 at L,=s;,_,. Thus, we have the necessary information
for constructing the interpolation function ; for vertex node
II=1,2,3)

k-2

(Ly —so)(Ly —51)(Ly — s3) - (Ly — Sg—2) 1_[ Ly —sp

- (Sk—1 — S0)(Sk—1 — S1) =+ (Sg—1 — Sk—2) - =0

Y
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Element types

Similar expressions can be derived for nodes located at other
than the vertices. In general y; for node i is given by

k-1
_T1%L

o [
j=1 f}

where f, are functions of L,, L, and L;, and fj" is the value of f; at

node i. The functions f; are derived from the equations of k — 1
lines that pass through all the nodes except node i

Example

First, consider the triangular element that has two nodes per
side (i.e, k = 2). This is the linear triangular element with the
total number of nodes equal to three (n = 3). For node 1, we
have k — 2 =0 and

Ly —so

So =0, si=1, = =L
0 1 Y1 P— 1

Y
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Element types

Similarly, for ¢y, and y;, we obtain
Y, =Ly, Y3= L3

Next, consider the triangular element with three nodes per side

(k = 3). The total humber of nodes is equal to six. For node 1, we
have

| 4

CMH COMPUTATIONAL MARINE HYDRODYNAMICS LAB
SHANGHAI JIAO TONG UNIVERSITY

NA26018 Finite Element Analysis of Solids and Fluids




Element types

The function should vanish at nodes 1, 3, 4, 5 and 6, and should
be equal to 1 at node 2. Equivalently, ¢, should vanish along the
lines connecting nodes 1 and 5, and 3 and 5. These two lines are
given in terms of L, and L, (note that the subscripts of L refer to
the nodes in the three-node triangular element) as L,=0 and
L,=0. Hence, we have

LZ_SOLl_SO LZ_OLl_O
Y, = —

= =4L,L
S1 = S0 51— So 1 1 1

2 2
Similarly,

Y3 =1L, (2L2 - 1)» Yy=4L,L3, Ys= L3(2L3 - 1), Y =4L1L;

§ s=10)
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Element types

As a last example, consider the cubic element (i.e, k — 1 = 3). For
; we note that it must vanish along lines .,=0, L,=1/3 and
L,=2/3. Therefore, we ha}/e ,

Ly —0L1—3l1—3

¢ =
The function y, must vanish along lines L,=0, L,=0, and L,=1/3
(and node 2 is at a distance of 2/3 along L; and a distance of 1/3

along L,)

1
- §L1(3L1 — 1)L, — 2)

) | 4

Ny = S
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Element types

Similarly, we can derive other functions, Thus we have

1 9
l/}]_ = §L1(3L1 — 1)(3L1 — 2), l/)z = EL2L1(3L1 — 1)
9 1
Y3 = §L1L2(3L2 - 1), Yy = §L2(3L2 - 1)(3L2 —2)
9 9
Ys = EL2L3(3L2 - 1), Yo = §L2L3(3L3 - 1)
1 9
l/}7 - EL3(3L3 - 1)(3L3 - 2), l/)8= §L3L1(3L3 - 1)
9
Yo = §L1L3(3L1 - 1), Y10=27L1L;,L5
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Element types

Rectangular Elements

Analogous to the Lagrange family of triangular elements, the

Lagrange family of rectangular elements can be developed from

a rectangular array.

® Since a linear rectangular element has four corners (hence,
four nodes), the polynomial should have the first four terms
1, x,y,xy (which form a parallelogram in Pascal's triangle and a
rectangle in the array given in Fig)

® The coordinates (x,y) are usually taken to be the element (i.
e, local) coordinates

In general, a pth-order lagrange rectangular element has n
nodes, with

n=@p+1* (@=01-)
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Element types

® The associated polynomial contains the terms from the pth
parallelogram or the pth rectangle in Fig.

® When p = 0, it is understood (as in triangular elements) that
the node is at the center of the element (i.e, the variable is a
constant on the entire element)

® The Lagrange quadratic rectangular element has nine nodes,
and the associated polynomial is given by

u(x,y) = a; + a,x + agy + a,xy + asx? + agy?
+a,x%y + agxy? + agx?y?

du

—ax — a2 + a4y + 2a5x + 2a7xy + a8y2 + Zagxyz
du 2 2
@ = a3z + asx + 2a¢y + a;x° + 2agxy + 2a9x°y
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Element types

Rectangular array Lagrange Serendipity
of elements elements elements
>
2
------------------------------ > e e LR R e
P S S e e e e S e >
L
P

-

h

Xy

Figures not shown

Figures not shown
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Element types

® The polynomial contains the complete polynomial of the
second degree plus the third-degree terms x?y and xy? and
also the x%y* term

® 4 of the nine nodes are placed at the four corners, 4 at the
midpoints of the sides, and 1 at the center of the element

® The polynomial is uniquely determined by specifying its values
at each of the 9 nodes

u(x,y) = a; + a,x + asy + a,xy + asx? + agy*
+a,x%y + agxy? + aqx?y?

ou

< 3~ G2 T auy + 205X + 2a;xy + agy® + 2a9xy*
ou 2 2
B = a3 + a4X + 206y + a7x° + 20Xy + 209Xy
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Element types

® Moreover, along the sides of the element, the polynomial is
quadratic (with three terms-as can be seen by setting y = 0)
and is determined by its values at the three nodes on that side

® If two rectangular elements share a side and the polynomial is
required to have the same values from both elements at the
three nodes of the elements, then u is uniquely defined along
the entire side (shared by the two elements)

u(x,y) = a; + a,x + agy + a,xy + asx? + agy?
+a;x%y + agxy? + aqx?y?

du

ox 22 + agy + 2asx + 2a;xy + agy® + 2aqxy?
ou 2 2
@ = az + ayx + 2a5y + a;x“ + 2agxy + 2a9x°y
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Element types

® Note that the normal derivatives of u approximated by the
quadratic Lagrange polynomials is quadratic in the tangential
direction and linear in the normal direction (i.e, ou/dx is
quadratic in y and linear in x, and du/dy is quadratic in x and

linear in y)

u(x,y) = a; + a,x + azy + asxy + asx?* + agy?
+a,x%y + agxy? + agx?y?

Ju 2 2
ou 2 2
@ = a3z + aux + 2a6y +a;x° + 2a8xy + 2(1936 y
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Element types

The pth-order Lagrange rectangular element has the pth-degree
polynomial n

u(x,y)=Zaixjyk G+k<p+1;j,k<p)
i=1
n

= z u;p;
=1
y; are called the pth-order Lagrange interpolation functions
® The Lagrange interpolation functions associated with
rectangular elements can be obtained from corresponding one-
dimensional Lagrange interpolation functions by taking the
tensor product of the x direction (one-dimensional)

interpolation functions with the y direction (one-dimensional)
interpolation functions

. . . . MPUTATIONAL MARINE HYDRODYNAMI
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Element types

® Let the x and y coordinates be taken along element sides with
the origin of the coordinate system at the lower left corner of

the rectangle.

® For an element with dimensions a and b along the x and y
directions, the interpolation functions are given as follows

n Linear(p=1)
(=11 (1. 1) /2%
... ¥
>
RSN
(-1, -1) (1,-1) Quadratic(p=2)
I]A
gl
{7 "L "J TR
= 6 771’2 ¢5
¢ B N 7S Y3 Y

NA26018 Finite Element Analysis of Solids and Fluids
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|
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y(y —b/2)
1
2b* J
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Element types

The two vectors are the one-dimensional interpolation functions
along the x and directions, respectively. We obtain

1=<1‘%)(1‘§)<1‘27y>(1‘%)' ve=—a-5a-2(1-2)

b
PEYR0D wea-Bo-nT0-]
L 1 MR R (B
= HE SN H
0= 2(% ) 1)%(2% B 1)' (9:2.24)
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Element types

X
Linear(p=1) [y, . '7a (-2 Y
Yo Yy X b b

a
( 1 )
uadratic(p=2 x—5al(x—a)| 1 \T
Q (p=2) ( 21) (y—gb)(y—b)
(-7¢) o T
W1 be ¥y x(x — a) 2
bo s ol =) TTTY AL
Y3 PYg Yo 27\2 — = b?
x(x—%a) y(y —b/2)
1
1 = b2
pth Order \ “(7“) ) ’ ’

Y1 Yy e Y]

f g1 '
I/Jzz | = {f; } {gz }
l/)P }-p+1 :gp+1

Vpi1 Waprz o Pn
k=(@+Dp+1,n=((p+1)>?
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Element types

pth Order
[ Y1 Ype2 e Pk

fi 91 T
e _{fl }{9 }
l/Jp }Cp+1 «.gp+1

Vpi1 Yopiz - Ynl

k=@+p+1,n=(p+1)>
where f; (x) and g; (y) are the pth-order interpolants in x and y,
respectively. For example the polynomial

€ —&DE —82) € = &) = &iv) ~ (§ = &paa)

M e ) G &) ) (G )

(where ¢; Is the ¢ coordinate of node i) is the pth-degree
interpolation polynomial in § that vanishes at points &, &,,*+, &,_4,
Sivrrt &41- We recall that (x,y) are the element coordinates
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Element types

It is convenient (for numerical integration purposes) to express
the interpolation functions in terms of the natural coordinates &

and 2(x —x1) —a 2(y — 1) — b
§ = . , n= b

where x; and y, are the global coordinates of node 1 in the local x
and y coordinates. For a coordinate system with origin fixed at
node 1 and coordinates parallel to the sides of the element, we

have x; = y; =0. In this case, the quadratic interpolation functions
can be written in terms of the natural coordinates & and n as

1
. : Y, = =2 =D +n?)
(5 _ 22\ — 2 __ = 2\ (1 — 12 1
(2} 4(f M -n*) s 41}(5"‘5 )(n—n?), 1/1825(1—52)(77"‘772)
Y2 = =51 =DM =1%) hs=—-5(5-82)(A-n?), ”T
— (1 — &2)(1 — n? 1
= A=)y e e [(

-

1
e =5 +)(1—n?)

NA26018 Finite Element Analysis of Solids and Fluids SRS
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Element types

The Serendipity Elements

® Since the internal nodes of the higher-order elements of the
Lagrange family do not contribute to the interelement
connectivity, they can be condensed out at the element level so
that the size of the element matrices is reduced

® Alternatively, we can use the so-called serendipity elements to
avoid the internal nodes present in the Lagrange elements. The
serendipity elements are those rectangular elements which
have no interior nodes. In other words, all the node points are
on the boundary of the element. The interpolation functions for
serendipity elements cannot be obtained using tensor products
of one-dimensional interpolation functions. Instead, an
alternative procedure that employs the interpolation properties
Is used

Here we illustrate how to construct the interpolation functions for
the eight-node (quadratic) element using the natural coordinates
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Element types

The interpolation function for node 1 should take on a value of
zero at nodes 2, 3,---,8 and a value of unity at node 1.
Equivalently, ¥, should vanish on the sides defined by the
equations1-¢é=0,1-n=0,and 1+ ¢ +n = 0. Therefore, 1, is of
the form

PiEm=c1=-A-mMA+S+n)

where c is a constant that should be determined so as to yield
Y,(—1,-1) = 1. We obtain ¢ = —1/4, and therefore

1
Yi(é,m) = _Z(l —HA-mMA+<&+n)

We can construct other interpolation functions in a similar
manner. We have

. . . . MPUTATIONAL MARINE HYDRODYNAMI
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Element types

hi=—3A-OA-DA+E+D,  Yr=5(1-E)A-n)
V=7 AHOA-MELHE-m, =50 - (-7
Vs =51+ (1), Ve =71 - HA+ ML~ +n)
by =5 (1 - &)1 +n) Vs =71+ O+ M1+ +n)

Note that all the y; for the eight-node element have the form

Y = c1 + &+ can + cuén + c5E% + con® + c;E%n + cgén?

The derivatives of ; with respect to ¢ and n are of the form

al/)i . 2
_05 =, +cun + 2c5& + 2¢,8n + cgn

afi . 2

—an = 3 + C4& + 2¢c4n + & + 2¢c4én

NA26018 Finite Element Analysis of Solids and Fluids CMHL SEIANGH%M]'IAO TOILY]%R%)NWE%}'—??




Element types

Plots of y; and vy, for the eight-node serendipity element are

shown

® Noted that ¢, of the nine-node element is zero at the element
center, whereas 1, of the eight-node element is nonzero there

L }:\
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Element types

The interpolation functions ; for the twelve-node element are of
the form

Y; = 8-nodes element +Cof3 + 1N + 11831 + 1083

Wi = ¢+ o8+ can + cadn + c587 + con’® + ;8% + cgén’
1 9
P =35 (1=HA-m[-10+9(% +n?)] b2 =551 -m(A-£*)(A -39
9
ps =351 -m(1-§)1+32),

1
Ya =55 A +HA—m)[-10+ 9(&% +1n?)]

TA U5 =%(1—5)(1—n2)(1—3n), Ve =3iz(1+€)(1—n2)(1—3n)
o 10 (1 12] W, = % (1-8(1-72)1+3n), g = 3% (1481 —n3)(1+3n)
7 85 il Py = %(1 —OA+n[-10+9(&2+n?)], Y10 = 3%(1 +m)(1—$§2)(1-3%)
25 60  yu - %(1 +m(1-£2)(1 +39), (9.2)
A2 3, A P12 =312(1 +A+m[=10+9(5* +n%)]
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Element types

Hermite Cubic Interpolation Functions

In the above discussion, we developed only the Lagrange

interpolation functions for trangular and rectangular elements.

® The Hermite family of interpolation functions (which
interpolate the function and its derivatives) were not
discussed

® Recall that such functions are required in the finite element
formulation of fourth-order (or higher-order) differential
equations (e.g, the Euler-Bernoulli beam theory).

For the sake of completeness, while not presenting the details of
the derivation, the Hermite cubic interpolation functions for two
rectangular elements are summarized in Table. The first one is
based on the interpolation of (u, ou/dx,ou/dy, 0%°u/oxdy) at each
node, and the second one is based on the interpolation of
(u,0u/0x,0u/dy) at each node
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Element types

Element type Interpolation functions Remarks
Lagrange element
Linear %(l + E)(] + ) Nodei=1,.... 4
Quadratic Vi = %{-‘u(l + En) no(l + no) Comer node i

Serendipity element
Quadratic

Hermite cubic element
Nonconforming element
Variable u
Derivative (du/dx)
Derivative (du/dy)
Derivative (8%u/dxdy)
Conforming element
Variable u
Derivatuve (du/idx)

Denvative (du/dy)

Wi ={s')u(| + o)1 — €2)
'l’;‘-'%Eu(l +&)(1 — n?)
v = (1 —E2(1 = %)

Wi = ﬁ“ + E)(1 + no)téo +no — 1)
Wi =31 —EH( + o)
31+ &)1 - %)

I

Wi

i ST (T ) I ¢

o1 = % (& +E)2(E — D +n) (0 — 2)

G141 = — L& (E + &2 — D+ 000 —2)
0142 =— 15 & + &2 G0 — 2mi(n+m) o — 1)

9143 = 1ebi & + E)2(E — Dni(n+ 0 (o — 1)
[H=3-D+ 1 i=1,..., 4]

@1 = ,!‘(Eu b Do+ D2+ &+ no — 2~ %)
@41 = iga‘(fn + 1) (& — Do + 1)

Yry2 = ',‘;'I:(En + Do+ Do — 1)

E=(x —x.)/a, n=(y—y:)/b, Eo=EE;. no=nn;

Side node i, & =0
Side node i, n; =0
Interior node i

Corner node ¢
Side node i, & =0
Side node i, n; =0
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