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 In the previous courses, we studied the finite element 
analysis of second-order equation and its analogues in the 
fields of heat transfer, solid mechanics

 As part of this study, we developed the interpolation 
functions for the basic elements, namely, the linear 
triangular and rectangular elements

 These elements, which were developed in connection with 
the finite element analysis of a second-order partial 
differential equation in a single variable, are useful in all 
finite element models that admit Lagrange interpolation of 
the primary variables of the weak formulation

If a library of interpolation functions is available, then we can 
select admissible functions for the model from the library

Introduction
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Objectives

 The objective of this course is to develop a library of two-
dimensional triangular and rectangular elements of the 
Lagrange family (i. e, elements over which only the function 
not its derivativesare interpolated) The Hermite cubic 
interpolation functions are also presented, without a 
derivation, for the sake of completeness and reference 

 The regularly shaped elements, called master elements, for 
which interpolation functions are developed here can be 
used for numerical evaluation of integrals defined on 
irregular elements, this requires a transformation of the 
geometry from the actual element shape to an associated 
master element

Once we have elements of different shapes and order at our 
disposal, we can choose appropriate elements and associated 
interpolation functions for a given problem
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Element types

Triangular Elements

The linear (three-node) triangular element was developed in last 
course

Higher-order triangular elements (i.e, triangular elements with 
interpolation functions of higher degree) can be systematically 
developed with the help of the so-called Pascal‘s triangle, which 
contains the terms of polynomials of various degrees in the two 
coordinates x and y, as shown in Fig. 
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Element types

Here x and y denote some local coordinates; they do not, in 
general represent the global coordinates of the problem. We can 
view the position of the terms as the nodes of the triangle 

the constant 
term, the first 
and last terms 
of a given row 
being the 
vertices of the 
triangle
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Element types

Of course, the shape of the triangle is arbitrary--not necessarily
an equilateral triangle, as might appear from the position of the 
terms in Pascal's triangle 
For example, a triangular element of order 2 (i.e, the degree of 
the polynomial is 2) contains six nodes, as can be seen from the 
third row of Pascal‘s triangle. The position of the six nodes in the 
triangle is at the three vertices and at the midpoints of the three 
sides. The polynomial involves six constants, which can be 
expressed in terms of the nodal values of the variable being 
interpolated as

u =  

𝑖=1

6

𝑢𝑖𝜓𝑖 𝑥, 𝑦
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Element types

where 𝜓𝑖 are the quadratic interpolation functions obtained 
following the same procedure as that used for the linear element. 
In general, a pth-order triangular element has a number of n 
nodes

and a complete polynomial of pth degree is given by

u =  

𝑖=1

6

𝑢𝑖𝜓𝑖 𝑥, 𝑦

n =
1

2
𝑝 + 1 𝑝 + 2

u 𝑥, 𝑦 =  

𝑖=1

𝑛

𝑎𝑖𝑥
𝑟𝑦𝑠 =  

𝑗=1

𝑛

𝑢𝑗𝜓𝑗 , 𝑟 + 𝑠 ≤ 𝑝
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Element types

 The location of the entries in Pascals triangle gives a 
symmetric location of nodal points in elements that will 
produce exactly the right number of nodes to define a 
Lagrange interpolation of any degree

 It should be noted that the Lagrange family of triangular 
elements (of order greater than zero) should be used for 
second-order problems that require only the dependent 
variables (not their derivatives) of the problem to be 
continuous at interelement boundaries

 It can be easily seen that the pth-degree polynomial 
associated with the pth-order Lagrange element, when 
evaluated on the boundary of the element, yields a pth-
degree polynomial in the boundary coordinate
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Element types

For example, the quadratic polynomial associated with the 
quadratic（six-node） triangular element shown in Fig. is given 
by

The derivatives of ue are

The element shown in Fig. is an arbitrary quadratic triangular 
element. 

𝑢𝑒 𝑥, 𝑦 = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥𝑦 + 𝑎5𝑥
2 + 𝑎6𝑦

2

𝜕𝑢𝑒

𝜕𝑥
= 𝑎2 + 𝑎4𝑦 + 2𝑎5𝑥,

𝜕𝑢𝑒

𝜕𝑦
= 𝑎3 + 𝑎4𝑥 + 2𝑎6𝑦
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Element types

 By rotating and translating the (𝑥, 𝑦) coordinate system, we 
obtain the (𝑠, 𝑡) coordinate system

 Since the transformation from the (𝑥, 𝑦) system to the (𝑠, 𝑡)
system involves only rotation (which is linear) and 
translation, a kth-degree polynomial in the (𝑥, 𝑦) coordinate 
system is still a kth-degree polynomial in the (𝑠, 𝑡) system

where  𝑎𝑖, (𝑖 = 1, 2, … , 6) are constants that depend on 𝑎𝑖, and the 
angle of rotation 𝛼. Now by setting 𝑡 = 0, we get the restriction 
of 𝑢 to side 1-2-3 of element Ω𝒆

which is a quadratic 
polynomial in 𝑠

𝑢𝑒 𝑠, 𝑡 =  𝑎1 +  𝑎2𝑠 +  𝑎3𝑡 +  𝑎4𝑠𝑡 +  𝑎5𝑠
2 +  𝑎6𝑡

2

𝑢𝑒 𝑠, 𝑡 =  𝑎1 +  𝑎2𝑠 +  𝑎5𝑠
2
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If a neighboring element Ω𝒇 has its side 5-4-3 in common with 
side 1-2-3 of element Ω𝒆, then the function u on side 5-4-3 of 
element Ω𝒇 also a quadratic polynomial

Since the polynomials are uniquely defined by the same nodal 

values 𝑈1=𝑢1
𝑒=𝑢5

𝑓
, 𝑈2=𝑢2

𝑒=𝑢4
𝑓
, and 𝑈3=𝑢3

𝑒=𝑢3
𝑓
, we have 𝑢𝑒 (𝑠, 0)

=𝑢
𝑓
(𝑠, 0) and hence the function 𝑢 is uniquely defined on the 

interelement boundary of elements 𝑒 and 𝑓

The ideas discussed above can be easily 
extended to three dimensions, in which 
case Pascal's triangle takes the form of a 
Christmas tree and the elements are of a 
pyramid shape, called tetrahedral elements

𝑢𝑓 𝑠, 0 =  𝑏1 +  𝑏2𝑠 +  𝑏5𝑠
2
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Element types

The alternative derivation of the interpolation functions for the 
higher-order Lagrange family of triangular elements is simplified 
by use of the area coordinates 𝐿𝑖

For triangular elements it is possible to construct three non-
dimensionalized coordinates 𝐿𝑖 (𝑖 = 1, 2, 3) that relate respectively 
to the sides directly opposite nodes 1, 2 and 3 such that

where 𝐴 is the area of the triangle formed by nodes 𝑗 and 𝑘 and 
an arbitrary point 𝑃 in the element, and 𝐴 is the total area of the 
element

For example, 𝐴1 is the area of the 
shaded triangle, which is formed by 
nodes 2 and 3 and point 𝑃. The point 𝑃
is at a perpendicular distance of s from 
the side connecting nodes 2 and 3. We 
have 𝐴1 = 0.5𝑏𝑠 and 𝐴 = 0.5𝑏ℎ Hence,

𝐿𝑖 =
𝐴𝑖

𝐴
𝐴 =  

𝑖=1

3

𝐴𝑖
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Clearly, 𝐿1 is zero on side 2-3（hence, zero at nodes 2 and 3） and 
has a value of unity at node 1. Thus, 𝐿1 is the interpolation 
function associated with node 1. Similarly, 𝐿2 and 𝐿3 are the 
interpolation functions associated with nodes 2 and 3, 
respectively. In summary, we have

for a linear triangular element. We 
shall use 𝐿𝑖 to construct interpolation 
functions for higher-order triangular 
elements

𝐿1 =
𝐴1

𝐴
=

𝑠

ℎ

𝜓𝑖 = 𝐿𝑖
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Element types

Consider a higher-order element with 𝑘 nodes (equally spaced)
per side. Then total number of nodes in the element is given by

the degree of the interpolation functions is equal to 𝑘 − 1. For 
example, for the quadratic element we have 𝑘 − 𝑙 = 2 and 𝑛 = 6

Let the corner (i. e, vertex) nodes 
be denoted by 𝐼, 𝐽 and 𝐾, and let 
ℎ𝐼 be the perpendicular distance of 
the node from the side connecting
𝐽 and 𝐾

n =  

𝑖=0

𝑘−1

𝑘 − 𝑖 = 𝑘 + 𝑘 − 1 + ⋯+ 1 =
1

2
𝑘 𝑘 + 1
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Element types

Then the distance sp to the pth row parallel to side 𝐽 − 𝐾 (under 
the assumption that the nodes are equally spaced along the 
sides and the rows) is given in nondimensional form by

The interpolation function 𝜓𝐼 should be zero at the nodes on the 
lines 𝐿𝐼=0,1/(𝑘 − 1),… , 𝑝/(𝑘 − 1) (𝑝 = 0,1, … , 𝑘 − 2), and 𝜓𝐼 should be 
equal to 1 at 𝐿𝐼=𝑠𝑘−1. Thus, we have the necessary information 
for constructing the interpolation function 𝜓𝐼 for vertex node 
𝐼(𝐼 = 1, 2, 3)

𝑠𝑝 =
𝑝

𝑘 − 1
, 𝑠0 = 0, 𝑠𝑘−1= 1

𝜓𝐼 =
𝐿𝐼 − 𝑠0 𝐿𝐼 − 𝑠1 𝐿𝐼 − 𝑠2 ⋯ 𝐿𝐼 − 𝑠𝑘−2

𝑠𝑘−1 − 𝑠0 𝑠𝑘−1 − 𝑠1 ⋯ 𝑠𝑘−1 − 𝑠𝑘−2
=  

𝑝=0

𝑘−2
𝐿𝐼 − 𝑠𝑝

𝑠𝑘−1 − 𝑠𝑝
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Similar expressions can be derived for nodes located at other 
than the vertices. In general 𝜓𝑖 for node 𝑖 is given by

where 𝑓, are functions of 𝐿1, 𝐿2 and 𝐿3, and 𝑓𝑗
𝑖 is the value of 𝑓𝑗 at 

node 𝑖. The functions 𝑓𝑗 are derived from the equations of 𝑘 − 1
lines that pass through all the nodes except node 𝑖

Example
First, consider the triangular element that has two nodes per 
side (i.e, 𝑘 = 2). This is the linear triangular element with the 
total number of nodes equal to three (𝑛 = 3). For node 1, we 
have 𝑘 − 2 = 0 and

𝜓𝑖 =  

𝑗=1

𝑘−1
𝑓𝑗

𝑓𝑗
𝑖

𝑠0 = 0, 𝑠1= 1, 𝜓1=
𝐿1 − 𝑠0
𝑠1 − 𝑠0

= 𝐿1
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Element types

Similarly, for 𝜓2 and 𝜓3, we obtain

Next, consider the triangular element with three nodes per side 
(𝑘 = 3). The total number of nodes is equal to six. For node 1, we 
have

𝜓2 = 𝐿2 , 𝜓3= 𝐿3

𝑠0 = 0, 𝑠1=
1

2
, 𝑠2= 1

𝜓1 =
𝐿1 − 𝑠0
𝑠2 − 𝑠0

𝐿1 − 𝑠1
𝑠2 − 𝑠1

= 𝐿1 2𝐿1 − 1
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The function should vanish at nodes 1, 3, 4, 5 and 6, and should 
be equal to 1 at node 2. Equivalently, 𝜓2 should vanish along the 
lines connecting nodes 1 and 5, and 3 and 5. These two lines are 
given in terms of 𝐿1 and 𝐿2 (note that the subscripts of 𝐿 refer to 
the nodes in the three-node triangular element) as 𝐿2=0 and 
𝐿1=0. Hence, we have

Similarly,

𝜓2 =
𝐿2 − 𝑠0
𝑠1 − 𝑠0

𝐿1 − 𝑠0
𝑠1 − 𝑠0

=
𝐿2 − 0

1
2

𝐿1 − 0

1
2

= 4𝐿1𝐿2

𝜓3 = 𝐿2 2𝐿2 − 1 , 𝜓4= 4𝐿2𝐿3, 𝜓5= 𝐿3 2𝐿3 − 1 ,        𝜓6 = 4𝐿1𝐿3
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As a last example, consider the cubic element (i.e, 𝑘 − 1 = 3). For 
𝜓1 we note that it must vanish along lines 𝐿1=0, 𝐿1=1/3 and 
𝐿1=2/3. Therefore, we have

The function 𝜓2 must vanish along lines 𝐿1=0, 𝐿2=0, and 𝐿1=1/3 
(and node 2 is at a distance of 2/3 along 𝐿𝑖 and a distance of 1/3 
along 𝐿2) 

𝜓1 =
𝐿1 − 0

1 − 0

𝐿1 −
1
3

1 −
1
3

𝐿1 −
2
3

1 −
2
3

=
1

2
𝐿1 3𝐿1 − 1 3𝐿1 − 2

𝜓2 =
𝐿1 − 0

2
3 − 0

𝐿2 − 0

1
3 − 0

𝐿1 −
1
3

2
3 −

1
3

=
9

2
𝐿2𝐿1 3𝐿1 − 1
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Similarly, we can derive other functions, Thus we have

𝜓1 =
1

2
𝐿1 3𝐿1 − 1 3𝐿1 − 2 , 𝜓2 =

9

2
𝐿2𝐿1 3𝐿1 − 1

𝜓3 =
9

2
𝐿1𝐿2 3𝐿2 − 1 , 𝜓4 =

1

2
𝐿2 3𝐿2 − 1 3𝐿2 − 2

𝜓5 =
9

2
𝐿2𝐿3 3𝐿2 − 1 , 𝜓6 =

9

2
𝐿2𝐿3 3𝐿3 − 1

𝜓7 =
1

2
𝐿3 3𝐿3 − 1 3𝐿3 − 2 , 𝜓8=

9

2
𝐿3𝐿1 3𝐿3 − 1

𝜓9 =
9

2
𝐿1𝐿3 3𝐿1 − 1 , 𝜓10= 27𝐿1𝐿2𝐿3
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Rectangular Elements

Analogous to the Lagrange family of triangular elements, the 
Lagrange family of rectangular elements can be developed from 
a rectangular array. 
 Since a linear rectangular element has four corners (hence, 

four nodes), the polynomial should have the first four terms 
1, 𝑥, 𝑦, 𝑥𝑦 (which form a parallelogram in Pascal's triangle and a 
rectangle in the array given in Fig)

 The coordinates (𝑥, 𝑦) are usually taken to be the element (i. 
e, local) coordinates

In general, a pth-order lagrange rectangular element has n 
nodes, with

n = 𝑝 + 1 2 𝑝 = 0,1,⋯
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 The associated polynomial contains the terms from the pth 
parallelogram or the pth rectangle in Fig.

 When 𝑝 = 0, it is understood (as in triangular elements) that 
the node is at the center of the element (i.e, the variable is a 
constant on the entire element)

 The Lagrange quadratic rectangular element has nine nodes, 
and the associated polynomial is given by

𝑢(𝑥, 𝑦) = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥𝑦 + 𝑎5𝑥
2 + 𝑎6𝑦

2

+𝑎7𝑥
2𝑦 + 𝑎8𝑥𝑦

2 + 𝑎9𝑥
2𝑦2

𝜕𝑢

𝜕𝑥
= 𝑎2 + 𝑎4𝑦 + 2𝑎5𝑥 + 2𝑎7𝑥𝑦 + 𝑎8𝑦

2 + 2𝑎9𝑥𝑦
2

𝜕𝑢

𝜕𝑦
= 𝑎3 + 𝑎4𝑥 + 2𝑎6𝑦 + 𝑎7𝑥

2 + 2𝑎8𝑥𝑦 + 2𝑎9𝑥
2𝑦
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 The polynomial contains the complete polynomial of the 
second degree plus the third-degree terms 𝑥2𝑦 and 𝑥𝑦2 and 
also the 𝑥2𝑦2 term

 4 of the nine nodes are placed at the four corners, 4 at the 
midpoints of the sides, and 1 at the center of the element

 The polynomial is uniquely determined by specifying its values 
at each of the 9 nodes

𝑢(𝑥, 𝑦) = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥𝑦 + 𝑎5𝑥
2 + 𝑎6𝑦

2

+𝑎7𝑥
2𝑦 + 𝑎8𝑥𝑦

2 + 𝑎9𝑥
2𝑦2

𝜕𝑢

𝜕𝑥
= 𝑎2 + 𝑎4𝑦 + 2𝑎5𝑥 + 2𝑎7𝑥𝑦 + 𝑎8𝑦

2 + 2𝑎9𝑥𝑦
2

𝜕𝑢

𝜕𝑦
= 𝑎3 + 𝑎4𝑥 + 2𝑎6𝑦 + 𝑎7𝑥

2 + 2𝑎8𝑥𝑦 + 2𝑎9𝑥
2𝑦
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 Moreover, along the sides of the element, the polynomial is 
quadratic (with three terms-as can be seen by setting 𝑦 = 0) 
and is determined by its values at the three nodes on that side

 If two rectangular elements share a side and the polynomial is 
required to have the same values from both elements at the 
three nodes of the elements, then 𝑢 is uniquely defined along 
the entire side (shared by the two elements)

𝑢(𝑥, 𝑦) = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥𝑦 + 𝑎5𝑥
2 + 𝑎6𝑦

2

+𝑎7𝑥
2𝑦 + 𝑎8𝑥𝑦

2 + 𝑎9𝑥
2𝑦2

𝜕𝑢

𝜕𝑥
= 𝑎2 + 𝑎4𝑦 + 2𝑎5𝑥 + 2𝑎7𝑥𝑦 + 𝑎8𝑦

2 + 2𝑎9𝑥𝑦
2

𝜕𝑢

𝜕𝑦
= 𝑎3 + 𝑎4𝑥 + 2𝑎6𝑦 + 𝑎7𝑥

2 + 2𝑎8𝑥𝑦 + 2𝑎9𝑥
2𝑦
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 Note that the normal derivatives of u approximated by the 
quadratic Lagrange polynomials is quadratic in the tangential 
direction and linear in the normal direction (i.e, 𝜕𝑢/𝜕𝑥 is 
quadratic in 𝑦 and linear in 𝑥, and 𝜕𝑢/𝜕𝑦 is quadratic in 𝑥 and 
linear in 𝑦)

𝑢(𝑥, 𝑦) = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥𝑦 + 𝑎5𝑥
2 + 𝑎6𝑦

2

+𝑎7𝑥
2𝑦 + 𝑎8𝑥𝑦

2 + 𝑎9𝑥
2𝑦2

𝜕𝑢

𝜕𝑥
= 𝑎2 + 𝑎4𝑦 + 2𝑎5𝑥 + 2𝑎7𝑥𝑦 + 𝑎8𝑦

2 + 2𝑎9𝑥𝑦
2

𝜕𝑢

𝜕𝑦
= 𝑎3 + 𝑎4𝑥 + 2𝑎6𝑦 + 𝑎7𝑥

2 + 2𝑎8𝑥𝑦 + 2𝑎9𝑥
2𝑦
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The pth-order Lagrange rectangular element has the pth-degree 
polynomial

𝜓𝑖 are called the pth-order Lagrange interpolation functions
 The Lagrange interpolation functions associated with 

rectangular elements can be obtained from corresponding one-
dimensional Lagrange interpolation functions by taking the 
tensor product of the 𝑥 direction (one-dimensional)
interpolation functions with the 𝑦 direction (one-dimensional) 
interpolation functions

𝑢 𝑥, 𝑦 =  

𝑖=1

𝑛

𝑎𝑖𝑥
𝑗𝑦𝑘 𝑗 + 𝑘 ≤ 𝑝 + 1; 𝑗, 𝑘 ≤ 𝑝

=  

𝑖=1

𝑛

𝑢𝑖𝜓𝑖
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 Let the 𝑥 and 𝑦 coordinates be taken along element sides with 
the origin of the coordinate system at the lower left corner of 
the rectangle. 

 For an element with dimensions 𝑎 and 𝑏 along the 𝑥 and 𝑦
directions, the interpolation functions are given as follows

𝜓1 𝜓4 𝜓7

𝜓2 𝜓5 𝜓8

𝜓3 𝜓6 𝜓9

=

𝑥 −
1
2
𝑎 𝑥 − 𝑎

−
1
2𝑎 −𝑎

)𝑥(𝑥 − 𝑎

1
2
𝑎

1
2
𝑎 − 𝑎

𝑥 𝑥 −
1
2
𝑎

𝑎
1
2
𝑎

𝑦 −
1
2
𝑏 𝑦 − 𝑏

1
2
𝑏2

)𝑦(𝑦 − 𝑏

−
1
4
𝑏2

)𝑦(𝑦 −  𝑏 2

1
2
𝑏2

𝑇

𝜓1 𝜓3

𝜓2 𝜓4
=

1 −
𝑥

𝑎
𝑥

𝑎

1 −
𝑦

𝑏

𝑦

𝑏

=
1 −

𝑥

𝑎
1 −

𝑦

𝑏
1 −

𝑥

𝑎

𝑦

𝑏
𝑥

𝑎
1 −

𝑦

𝑏

𝑥

𝑎

𝑦

𝑏

Linear(p=1)

Quadratic(p=2)
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The two vectors are the one-dimensional interpolation functions 
along the 𝑥 and directions, respectively. We obtain

𝜓1 = 1 −
2𝑥

𝑎
1 −

𝑥

𝑎
1 −

2𝑦

𝑏
1 −

𝑦

𝑏
,

𝜓3 =
𝑥

𝑎

2𝑥

𝑎
− 1 1 −

2𝑦

𝑏
1 −

𝑦

𝑏
,

𝜓5 =
4𝑥

𝑎
1 −

𝑥

𝑎

4𝑦

𝑏
1 −

𝑦

𝑏
,

𝜓7 = 1 −
2𝑥

𝑎
1 −

𝑥

𝑎

𝑦

𝑏

2𝑦

𝑏
− 1 ,

𝜓9 =
𝑥

𝑎

2𝑥

𝑎
− 1

𝑦

𝑏

2𝑦

𝑏
− 1 ,

𝜓2 =
4𝑥

𝑎
(1 −

𝑥

𝑎
)(1 −

2𝑦

𝑏
) 1 −

𝑦

𝑏

𝜓4 = (1 −
2𝑥

𝑎
)(1 −

𝑥

𝑎
)
4𝑦

𝑏
1 −

𝑦

𝑏

𝜓6 =
𝑥

𝑎
(
2𝑥

𝑎
− 1)

4𝑦

𝑏
1 −

𝑦

𝑏

𝜓8 =
4𝑥

𝑎
(1 −

𝑥

𝑎
)
𝑦

𝑏

2𝑦

𝑏
− 1

(9.2.24)
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𝜓1 𝜓3

𝜓2 𝜓4
=

1 −
𝑥

𝑎
𝑥

𝑎

1 −
𝑦

𝑏

𝑦

𝑏

Linear(p=1)

𝜓1 𝜓4 𝜓7

𝜓2 𝜓5 𝜓8

𝜓3 𝜓6 𝜓9

=

𝑥 −
1
2
𝑎 𝑥 − 𝑎

−
1
2
𝑎 −𝑎

)𝑥(𝑥 − 𝑎

1
2
𝑎

1
2
𝑎 − 𝑎

𝑥 𝑥 −
1
2
𝑎

𝑎
1
2
𝑎

𝑦 −
1
2
𝑏 𝑦 − 𝑏

1
2
𝑏2

)𝑦(𝑦 − 𝑏

−
1
4
𝑏2

)𝑦(𝑦 −  𝑏 2

1
2
𝑏2

𝑇
Quadratic(p=2)

𝜓1 𝜓𝑝+2 … 𝜓𝑘

𝜓2

⋮ ⋱ ⋮
𝜓𝑝 ⋱

𝜓𝑝+1 𝜓2𝑝+2 … 𝜓𝑛

=

𝑓1
𝑓2
⋮
𝑓𝑝+1

𝑔1

𝑔2

⋮
𝑔𝑝+1

𝑇

pth Order

𝑘 = (𝑝 + 1)𝑝 + 1, 𝑛 = 𝑝 + 1 2
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where 𝑓𝑖 (𝑥) and 𝑔𝑖 (𝑦) are the pth-order interpolants in 𝑥 and 𝑦, 
respectively. For example the polynomial

(where 𝜉𝑖 is the 𝜉 coordinate of node i) is the pth-degree 
interpolation polynomial in ξ that vanishes at points 𝜉1, 𝜉2,…, 𝜉𝑖−1,

𝜉𝑖+1,… 𝜉𝑝+1. We recall that (𝑥, 𝑦) are the element coordinates

𝜓1 𝜓𝑝+2 … 𝜓𝑘

𝜓2

⋮ ⋱ ⋮
𝜓𝑝 ⋱

𝜓𝑝+1 𝜓2𝑝+2 … 𝜓𝑛

=

𝑓1
𝑓2
⋮
𝑓𝑝+1

𝑔1

𝑔2

⋮
𝑔𝑝+1

𝑇

pth Order

𝑘 = (𝑝 + 1)𝑝 + 1, 𝑛 = 𝑝 + 1 2

𝑓𝑖(𝜉) =
𝜉 − 𝜉1 (𝜉 − 𝜉2)⋯ (𝜉 − 𝜉𝑖−1)(𝜉 − 𝜉𝑖+1)⋯ 𝜉 − 𝜉𝑝+1

𝜉𝑖 − 𝜉1 (𝜉𝑖 − 𝜉2)⋯ (𝜉𝑖 − 𝜉𝑖−1)(𝜉𝑖 − 𝜉𝑖+1)⋯ 𝜉𝑖 − 𝜉𝑝+1
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It is convenient (for numerical integration purposes) to express 
the interpolation functions in terms of the natural coordinates ξ
and η

where 𝑥1 and 𝑦1 are the global coordinates of node 1 in the local 𝑥
and 𝑦 coordinates. For a coordinate system with origin fixed at 
node 1 and coordinates parallel to the sides of the element, we 
have 𝑥1 = 𝑦1 =0. In this case, the quadratic interpolation functions 
can be written in terms of the natural coordinates ξ and η as

𝜂 =
2(𝑦 − 𝑦1) − 𝑏

𝑏
𝜉 =

2(𝑥 − 𝑥1) − 𝑎

𝑎
,

𝜓1 =
1

4
(𝜉 − 𝜉2) 𝜂 − 𝜂2

𝜓2 = −
1

2
(1 − 𝜉2) 𝜂 − 𝜂2

 𝜓5 = (1 − 𝜉2)(1 − 𝜂2

𝜓6 =
1

2
(𝜉 + 𝜉2) 1 − 𝜂2

𝜓3 = −
1

4
𝜉 + 𝜉2 𝜂 − 𝜂2 ,

𝜓4 = −
1

2
𝜉 − 𝜉2 1 − 𝜂2 ,

𝜓9 =
1

4
(𝜉 + 𝜉2) 𝜂 + 𝜂2

𝜓7 = −
1

4
(𝜉 − 𝜉2) 𝜂 + 𝜂2

𝜓8 =
1

2
(1 − 𝜉2) 𝜂 + 𝜂2
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The Serendipity Elements

 Since the internal nodes of the higher-order elements of the 
Lagrange family do not contribute to the interelement 
connectivity, they can be condensed out at the element level so 
that the size of the element matrices is reduced

 Alternatively, we can use the so-called serendipity elements to 
avoid the internal nodes present in the Lagrange elements. The 
serendipity elements are those rectangular elements which 
have no interior nodes. In other words, all the node points are 
on the boundary of the element. The interpolation functions for 
serendipity elements cannot be obtained using tensor products 
of one-dimensional interpolation functions. Instead, an 
alternative procedure that employs the interpolation properties 
is used

Here we illustrate how to construct the interpolation functions for 
the eight-node（quadratic）element using the natural coordinates
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The interpolation function for node 1 should take on a value of 
zero at nodes 2, 3,…,8 and a value of unity at node 1.
Equivalently, 𝜓1 should vanish on the sides defined by the 
equations 1 − 𝜉 = 0, 1 − 𝜂 = 0, and 1 + 𝜉 + 𝜂 = 0. Therefore, 𝜓1 is of 
the form

where c is a constant that should be determined so as to yield 
𝜓1(−1,−1) = 1. We obtain 𝑐 = −1/4, and therefore

We can construct other interpolation functions in a similar 
manner. We have

)𝜓1(𝜉, 𝜂) = 𝑐(1 − 𝜉)(1 − 𝜂)(1 + 𝜉 + 𝜂

𝜓1(𝜉, 𝜂) = −
1

4
(1 − 𝜉)(1 − 𝜂) 1 + 𝜉 + 𝜂
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Note that all the 𝜓𝑖 for the eight-node element have the form

The derivatives of 𝜓𝑖 with respect to ξ and η are of the form

𝜓1 = −
1

4
1 − 𝜉 1 − 𝜂 1 + 𝜉 + 𝜂 ,

𝜓3 =
1

4
1 + 𝜉 1 − 𝜂 −1 + 𝜉 − 𝜂 ,

𝜓5 =
1

2
1 + 𝜉 1 − 𝜂2 ,

𝜓7 =
1

2
1 − 𝜉2 1 + 𝜂 ,

𝜓2 =
1

2
1 − 𝜉2 1 − 𝜂

𝜓4 =
1

2
1 − 𝜉 1 − 𝜂2

𝜓6 =
1

4
(1 − 𝜉)(1 + 𝜂) −1 − 𝜉 + 𝜂

𝜓8 =
1

4
(1 + 𝜉)(1 + 𝜂) −1 + 𝜉 + 𝜂

𝜓𝑖 = 𝑐1 + 𝑐2𝜉 + 𝑐3𝜂 + 𝑐4𝜉𝜂 + 𝑐5𝜉
2 + 𝑐6𝜂

2 + 𝑐7𝜉
2𝜂 + 𝑐8𝜉𝜂

2

𝜕𝜓𝑖

𝜕𝜉
= 𝑐2 + 𝑐4𝜂 + 2𝑐5𝜉 + 2𝑐7𝜉𝜂 + 𝑐8𝜂

2

𝜕𝜉𝑖
𝜕𝜂

= 𝑐3 + 𝑐4𝜉 + 2𝑐6𝜂 + 𝑐7𝜉
2 + 2𝑐8𝜉𝜂
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Plots of 𝜓1 and 𝜓2 for the eight-node serendipity element are 
shown
 Noted that 𝜓2 of the nine-node element is zero at the element 

center, whereas 𝜓2 of the eight-node element is nonzero there
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The interpolation functions 𝜓𝑖 for the twelve-node element are of 
the form

8-nodes element𝜓𝑖 = +𝑐9𝜉
3 + 𝑐10𝜂

3 + 𝑐11𝜉
3𝜂 + 𝑐12𝜉𝜂

3

𝜓𝑖 = 𝑐1 + 𝑐2𝜉 + 𝑐3𝜂 + 𝑐4𝜉𝜂 + 𝑐5𝜉
2 + 𝑐6𝜂

2 + 𝑐7𝜉
2𝜂 + 𝑐8𝜉𝜂

2

𝜓1 =
1

32
1 − 𝜉 1 − 𝜂 −10 + 9 𝜉2 + 𝜂2 ,

𝜓3 =
9

32
1 − 𝜂 1 − 𝜉2 1 + 3𝜉 ,

𝜓4 =
1

32
(1 + 𝜉)(1 − 𝜂) −10 + 9(𝜉2 + 𝜂2)

𝜓5 =
9

32
1 − 𝜉 1 − 𝜂2 1 − 3𝜂 ,

𝜓7 =
9

32
1 − 𝜉 1 − 𝜂2 1 + 3𝜂 ,

𝜓9 =
1

32
1 − 𝜉 1 + 𝜂 −10 + 9 𝜉2 + 𝜂2 ,

𝜓11 =
9

32
1 + 𝜂 1 − 𝜉2 1 + 3𝜉 ,

𝜓12 =
1

32
(1 + 𝜉)(1 + 𝜂) −10 + 9(𝜉2 + 𝜂2)

𝜓2 =
9

32
(1 − 𝜂)(1 − 𝜉2) 1 − 3𝜉

𝜓6 =
9

32
(1 + 𝜉)(1 − 𝜂2) 1 − 3𝜂

𝜓8 =
9

32
(1 + 𝜉)(1 − 𝜂2) 1 + 3𝜂

𝜓10 =
9

32
(1 + 𝜂)(1 − 𝜉2) 1 − 3𝜉

(9.2)
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Hermite Cubic Interpolation Functions

In the above discussion, we developed only the Lagrange 
interpolation functions for trangular and rectangular elements. 
 The Hermite family of interpolation functions (which 

interpolate the function and its derivatives) were not 
discussed

 Recall that such functions are required in the finite element 
formulation of fourth-order (or higher-order) differential 
equations (e.g, the Euler-Bernoulli beam theory).

For the sake of completeness, while not presenting the details of 
the derivation, the Hermite cubic interpolation functions for two 
rectangular elements are summarized in Table. The first one is 
based on the interpolation of (𝑢, 𝜕𝑢/𝜕𝑥, 𝜕𝑢/𝜕𝑦, 𝜕2𝑢/𝜕𝑥𝜕𝑦) at each 
node, and the second one is based on the interpolation of 
(𝑢, 𝜕𝑢/𝜕𝑥, 𝜕𝑢/𝜕𝑦) at each node
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