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Plane elasticity

Introduction
Elasticity is the part of solid mechanics that deals with stress and
deformation of solid continua

Linearized elasticity is concerned with
® small deformations
(i.e, strains and displacements that are very small compared to unity)

® linear elastic solids
(i.e, obey Hooke's law)

Plane elasticity problems:
There is a class of problems in elasticity whose solutions (i. e,

displacements and stresses) are not dependent on one of the coordinates
because of geometry, boundary conditions, and external applied loads

Such problems are called Plane elasticity problems
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Plane elasticity

The plane elasticity problems considered here are grouped into
plane strain and plane stress problems

® Both classes of problems are described by a set of two coupled
partial differential equations

® Those Egs. are expressed in terms of two dependent variables
that represent the two components of the displacement vector

Plane stress (x — y): no stress in z, no external force in z-dir
Plane strain (x — y): no strain in z, z-displacement is constrained

The governing equations of plane strain problems differ from
those of the plane stress problems only in the constitutive
equations (coefficients) of the differential equations
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Plane elasticity

The equations of motion, strain-displacement Relations

constitutive relations are the same.

It differ from each other only

on account of the difference in the constitutive equations for the

two cases
Oxx C11 Ciz
Oyy ¢ = |C12 Cy2
Oxy 0 0

Elasticity stiffness for plane strain

s . = E;(1—vyy)
U A+ vi) (A —vip —vay)

_ E;(1—vyq)
Coo =
(1 +vy0)(1 = vy —vyq)

C12 = V12C22, Cee = (12
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€11 =

0] ( Exx
0 Eyy
Cos | | 2€xy

Elasticity stiffness for plane stress

Ey

(1 —vi2va1)

E;

(1 —v12vs1)

Cr2 =

C12 = V12C22 = V21C11,Ce6 = G123
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Plane elasticity

plane strain problem

plane stress problem
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Plane elasticity

Summary of Equations
1. Equations of Motion:

00y, 00y 0%u,
ox T oy TP
do do 0%u

xy 9%y o _ y

or Do+ f=pu

where f, and f, denote the components of the body force vector

(measured per unit volume) along the x and y directions,
respectively, p is the density of the material, and

b [070x 0 90y D Dol S -
=| o ajay ajox|0 °° o[’ DRV e
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Plane elasticity

2. Strain-Displacement Relations:

£ =%e =aﬁ2€ =aux+auy

*ooox 'Y oy’ 9y o ox
gxx

or e=Due=1 &x ;,D= (D)7
2&xy

3. Stress-Strain (Constitutive) Relations:

O-xx C11 C12
Oyy ¢ = |C12  Cy2
Oxy 0 0
C11
o = Cg, C=|cyp
0

0 Exx )
0 |< &y ¢
Cos | | 2€xy
cio O
Cc, O
0 g6
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Plane elasticity

Boundary Conditions:
® Natural boundary conditions are

_ . con T,

or t

1l
Ql
-
Il
=>
®)
-
q'ﬂ
=
I
—~———
S S
< R
——

® Essential boundary conditions are
Uy = Uy, U,=1u, ONT,

oF u=1u On[‘u

(ny,n,)the components of the unit normal vector on boundary T

I, and T, :portions of the boundary

tyr ty: the components of the specified traction vector
u,, Uy, : the components of specified displacement vector
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Plane elasticity

Equations of motion can be expressed in terms of only the

displacements u, and u, by substituting stress-strain and strain-
displacement relations

Zxx €11 C12 8 ixx U, ou,, , aux+auy
yy ¢ = |C12 C22 yy Exx = [ 1 €yy T [ L&y T
Oy 0 0 ool (26xy « d0x dy dy  0Ox
00y, 00y 0%u,
ox T oy THTP e
00y, 00y, 0%u,
ox T oy Th TP e
0 U, ou,, 0 ou, Ouy 0%u,
0 aux+auy i, aux+ ouy\ 0%u,
x|\ Ty Tax )| Tay\G2 gy T2 gy | T TP
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Plane elasticity

or —D*CDu = f + pii

The boundary stress components (or tractions) can also be
expressed in terms of the displacements

ou du ou, OJu
tx = <C11 a_; + C12 a_;> n, +C66 < X + axy> le

dy (0-2)
ou Ju ou ou
ty =C66<ayx+ axy>nx+(clza_;+(:226_;]>ny
o _ | 0 ny
or t=nCDuy, n= [ 0 n, nx]
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Plane elasticity

Weak Formulations

Preliminary Comments:
There are two different ways of constructing the weak forms and
associated finite element model of the plane elasticity equations

1. Uses the principle of virtual displacements (or the principle of

minimum total potential energy)
expressed in terms of matrices relating displacements to strains, strains
to stresses, and the equations of motion. This approach is often used in
most finite element texts on solid mechanics

2. Follows a procedure consistent with the previous sections and
employs the weak formulation of Egs. (0O-1, 0O-2) to construct
the finite element model

Both methods give mathematically the same finite element
model, but differ in their algebraic forms
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Plane elasticity

Weak Form of the Governing Differential Equations

The second approach, which has been used throughout the
course, does not require knowledge of the principles of virtual
displacements or the total minimum potential energy but only
needs the governing differential equations of the problem

® Use the 3-step procedure for each of the two differential
equations: multiply the equation with a weight function wi and
integrate by parts to trade the differentiation equally between

the weight function and the dependent variables (u,, u,)

owq dw, .
0= jﬂ h, Sy O + Eaxy — Wy fy + pwiu, | dxdy

e

— f h.wq (axxnx + axyny)ds
I

e
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Plane elasticity

ow, adw, )
0= jﬂ h, Sy O + any — Wy fy, + pwyiy, | dxdy

e

— jé how, (axynx + ayyny)ds
Fe

ou ou _ du, Ou,
where Oxx = Clla_xx + Clza_yy Oxy = Coe( dy + ax)
ou,, du,,

O-yy = Clza‘l' CZZE

The last step of the development is to identify the primary and
secondary variables of the formulation and rewrite the boundary
integrals in terms of the secondary variables
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Plane elasticity

By comparing B. C, it follows that the boundary forces tr and ty
are the secondary variables. The weight functions w; and w, are

the first variations of u, and u,, respectively

The final weak forms are given by

O_J . aw1 aux+ du,, N dwy Bux_l_auy N N ded
= . e "% C11 Ox C12 7 dy Ce6 ﬁy(ay 6x) PWily | Axay

—f howq [, dxdy — 7€ h.wit,ds
0 T,

e e

O_J . odw, aux+auy GWZ 0ux+ du,, N Jxd
= e Co6 ax \ dy Ox ay €12 Ox C22 5~ dy pwally | dxdy

e

—f hew,f,dxdy — f hew,t,ds
0 T,

e e
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Plane elasticity

An examination of the weak forms reveals that:

® u, and u, are the primary variables, which must be carried as
the primary nodal degrees of freedom

® Only first derivatives of u, and u, with respect to x and y,
respectively, appear. Therefore, u, and u, must be
approximated by the Lagrange family of interpolation
functions, and at least bilinear (i.e, linear both in x and y)
interpolation is required

The simplest elements that satisfy those requirements are the linear
triangular and linear quadrilateral elements

® Although u, and u, are independent of each other, they are the
components of the displacement vector. Therefore, both
components should be approximated using the same type and
degree of interpolation
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Plane elasticity

Finite element model
General Model:

Let u, and u, be approximated by the finite element interpolations
(the element label ¢ is omitted in the interest of brevity)

n n

U, = z uitpj(x, y) Uy, = Z u;;wj(x, y)
j=1 j=1
u —
or =1 L WA _ o w1 =0uy|
u {uy} b w = 8u = {WZ _ 5uy} = PSA
where _ (Y1 0 Yo 0 Yn O
V=10 w0 oy, 0y,

T
_ (1 1 2 2 . oyt oy
A= {ux Uy Uy Uy Uy uy}
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Plane elasticity

At the moment, we will not restrict y; to any specific element so
that the finite element formulation to be developed is valid for
any admissible element

® If a linear triangular element (n = 3) is used, we have two (u},
u}) (i = 1,2,3) degrees of freedom per node and a total of six
nodal displacements per element

® For a linear quadrilateral element, there are a total of eight
nodal displacements per element

u,
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Plane elasticity

Since the first derivatives of y{ for a triangular element are

elementwise constant, all the strains (¢, , ¢,, , &, ) computed for
the linear triangular element are elementwise constant

® The linear triangular element for plane elasticity problems is
known as the constant-strain triangular (CST) element
® For a quadrilateral element the first derivatives of ); are not

constant: dy;/d¢ is linear in n and constant in ¢, and 0y} /dn is
linear in ¢ and constant in )

u.
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Plane elasticity

The strains are

£e=Du=DyYA=BA o =CBA

0 d
W W B
0x 0x 0x
0y, 0, 0y,
= =| O — _- .. _rr
B =Dy 9y 0 3y 0 3y
0P, I 0P, By 0P, Oy
| dy 0dx dy Ox dy  0x |
0 a/d
D:(D*)T D* = a/ax /y

0 d/dy 0/0x

Substituting approximation for u, and u, to weak form, setting
w; = ; and w, =, to obtain the ith algebraic equation associated
with each of the weak statements and writing the resulting
algebraic equations in matrix form, we obtain
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Plane elasticity

n n

we~ ) ul () Uy ~ ) u(x,y)

j=1 j=1

6W1 ou, auy dw; du, Ju, .
O=L h, x C11—— o + Ccip—— 3y + Cep 3y (ay + Ox) + pwyu, | dxdy

e

— ¢ h,wif,dxdy — ¢ h,wit,ds

Qe Ie
0 — J h dw, [(du, N du,, awz ou, N du,, N docd
- o, e C66 ax ay ax ay C12 ax C22 ay pWZuy X y

—f hew, fydxdy — f hew,tyds
0 T,

e e

[[M] [0] {{ﬁx}}_l_[[l{“] [K1 ]]{{ux}} {{Fl}}
[0] [M] {uy} K12]" {uy} F?}
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Plane elasticity

Matrix form
[M] [0] ] {{ux}} [ [K11] [Klz]l {{ux}} B {{Fl}}
[0] tiyd) (k21" (k2] ({w}) — (P

M;; =j phypjdxdy
d; 0Y; dP; 0Y;
K'l-l _j _rj ]
lj h’( 11 a ay + C66 ay ax

W 23
K =i = | e GG gt

—=dxdy

dxdy

dp; 0y dY; 0y
22 _ i oWj i 0Y;
Kij~ = fﬂe h(cee o ox T €22 dy 0x — - dxdy

F} =j ht/)ifxdxdy+¢ hy;t,.ds, F? =f hl/)ifydxdy+f hy;t, ds
Q r Q r

e e e e
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Plane elasticity

Vector form MEAe + KEAC = F€ + Qe

K¢=| h,BTCBdx M¢= j ph, PTWdx
Qe Qe

F¢ = | h,W'fdx Q°=| h,¥PTtdx
Qe Qe

The element mass matrix M¢and stiffness matrix K¢are of order
2n %X 2n, and the element load vector Fe and the vector of internal

forces Q¢ are of order 2n x 1 (n is the number of nodes in a
Lagrange finite element)

. . . . MPUTATIONAL MARINE HYDRODYNAMI
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Plane elasticity

Transient Problems

For transient analysis, using the time-approximation method
MeA° + K°A® = F¢ + Q°

e e — e
Ks+1As+1 — l:"s,s+1

e — e e
K1 = Kgi1 +asMgyy

where Foorr = Fopq + Mgy (agh + ayAS + asAf)
2 1 : :
A, = , a. = Ata , — _ _ y IS parameter In
R . ¥ o=y NewMark method
Fe = Fe + Q°

K¢, M¢ and Fe Is the vector appeared before
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Plane elasticity

Evaluation of integrals

For the linear triangular (i.e, CST) element, the y; and its
derivatives are given by

ows _ B 0wl _ ¥

1
1k (af +Bix+viy),

LT 24, dx 24," 9y 2A,
Since the derivatives of y; are constant, we have
1_.8180,326 0 - Bz 0
BS=—10vi 0 vz - 0 | (Bx2n)
“lyvi B vi B - ¥va Bnl

where 4,, is the area of the triangular element. Since B and C are
independent of x and y, the element stiffness matrix for the CST
element is given by

K¢ = h,A,(B®)TC®B® (2n x 2n)
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Plane elasticity

For the case in which the body force components f, and f,, are
elementwise constant (say, equal to £ and f, respectively )
the load vector F¢ has the form

(f0)
fyo
Fe= | h,(W®)Tfedx = Ache ). "Z"

Qe 3 fyo
fxo
o)

e (6% 1)

For a general quadrilateral element, it is not easy to compute the
coefficients of the stiffness matrix by hand. In such cases we use
the numerical integration method
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Plane elasticity

Assembly of finite element equations

The assembly procedure for problems with many degrees of
freedom is the same as that used for a single degree of freedom

problem, except that the procedure should be applied to both
degrees of freedom at each node

For example, consider the plane elastic structure and the finite
element mesh used in Fig.

TT 8/ \, _
AT N 2 There are 8 nodes in the mesh:
® A % hence the total size of the
G Tp Ky« o assembled stiffness matrix will be
@ @7 "\ b 16 x 16, and the force vector will be
®1 ®1 ' 16 x 1.
| 2 g Ty
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Plane elasticity

The first two rows and columns of the global stiffness matrix,

correspond to the global degrees (1,2) of freedom at global node

1, which has contributions from nodes 2 and 3 of elements 1 and
2, respectively

® Thus, the contributions to global coefficients k;;, (I,] = 1,2)
come from K;; (i,j = 3,4) and K;; (i,j = 5,6)

- 7 (9,10) (9,10)

[ L { (‘H) 3, 1V

8 \ \.s' Py 4 ?1 1.2 5 57

¥ e
®| ®|
I | Sl I 3 (56 (1,2) l() 9
1 2 3 (1.2) 7 (1,2)~ (3,4)
Element degrees of freedom Global dl‘;;’l'('('n‘ of freedom
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Plane elasticity

The global stiffness matrix coefficients K,,, K.», K13, K15, K55, Ks3

and K;, are known in terms of the element coefficients as follows
Ki1 = K35 + K§3, Ky = Kgg + Kiy,

_ 1 2 1
Ki; = Ksg + K34, Ki3 = Kgy
1 3 4 1 3 4 _
K33 = Ki1 + K55 + K33, K34 =Kj, + Ksg + K34, Kis=0
h 4
. " /\ (7.8) (9,10) (9,10)
L e ? @ Mo Bo3
® /[ N/ £33
; 3,4
@5 l® P N /_I)“
490 i (,f
® @ e (3,4)
®| ®1 : 4 Ge (1,2 U
6 >
1 2 3

O 2
(1.2 -~ (1,2)~

Element degrees of freedom “Global (.'lv;;‘n-«-s of freedom
NA26018 Finite Element Analysis of Solids and Fluids
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Plane elasticity

K3a = Kip + K6 + K34 Ki3 = K5,
® K;,denotes the coupling stiffness coefficient between the third

(u,) and fourth (u,) global displacement degrees of freedom,
both of which are at global node 2

® K,; denotes the coupling coefficient between first displacement
degree of freedom (u,) at global node 1 and third global
displacement degree (u,) of freedom at global node 2

. 8/ \ (7,8) (9,10) (9,10)
7 IO ; S \\ 4 ?1 1.2) ¢ . 5]
6 '
®.|,®@
-r) l ./ f _‘.PH
12K A 4
o o,/ |
\ &4 (3,4)
1 3 .
C>l QI - I 3 (56 (1,2) 1013
1 2 3 . (1.2) (1,2) (3.4)
Element degrees of freedom Global flv;;‘rvvs of freedom
.. . . . MPUTATIONAL YDROD
NA26018 Finite Element Analysis of Solids and Fluids CMH SEIANGH%{ II%RD—}EOILG %m&g}rg




Plane elasticity

With regard to the specification of the displacements (the
primary degrees of freedom) and forces (the secondary degrees
of freedom) in a finite element mesh, we have the fol lowing four
distinct possibilities

Casel: u, and u,, are specified(and t, and t,, and unknown)
Case2: u, and t,, are specified(and t, and u,, and unknown)
Case3: t, and u,, are specified(and u, and t,, and unknown)
Case4: t, and t,, are specified(and u, and u, and unknown)

In general, only one of the quantities of each of the pairs (u,, t,)
and (u,, t,) is known at a nodal point in the mesh. We are
required to make a decision as to which degree of freedom is
known when singular points are encountered
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