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Time-dependent problems

Fully Discretized Finite Element Equations

We now have the tools necessary to convert the set of ordinary
differential equations to a set of algebraic equations in much the

same way we converted a single differential equation to an
algebraic equation

Here, we start with matrix equation of semidiscrete finite element
models [K1{u} + [M1]{i} + [M2]{it} = {F)

with [M!] = [M] and [M?] = [0]

[M] i+ [K{u} = {F} (a)

subject to the initial conditions

o = {Uo} (b)

{u}, denotes the vector of nodal values of u at time ¢t =0, whereas
{up} denotes the column of nodal values u;,
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Time-dependent problems

As applied to a vector of time derivatives of the nodal values the
a-family of approximation reads as

Atsyq1[(1 — o) {u)s + a{tfsyq] = {u)sin —{u)s for0<a <1 (c)

{1.1}5+1 = {u}s'l' At{l:i}sﬂx | for0 < a < 1 (CI)
{Ws4e = (1 —a) {U}s + a{it}syq

Equation (c) can be used to reduce the ordinary differential
equations (a) to algebraic equations among the uj at time ¢, ;.
Since (a) is valid for any ¢t > 0, we can write it for times ¢t = t, and

t = ls4q

[M]{i}s + [K]s{u}s = {F]s (e)
IM[{t}s11 + [Klst1{utst1 = {Flsia (f)
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Time-dependent problems

IM{u}s = {F}s — [K]s{uls (9)
IM[{tt}s 41 = {F}ss1 — [Klss1{utssa (h)

It is assumed that the matrix [M] is independent of time.
Premultiplying both sides of (c) with [M] we obtain

AtspralM{i}seq + Atgy1(1 — a)IM[{u}s = [M]({u}ssq — {uls)

By (g) (h) we obtain

Atsp1a({Flsiq — [Klspi{utss1) + Ats1 (1 — @) ({F}s — [K]s{uls)
= [M]({u}ss+1 — {uls)

Solving for the vector {u}..;, we obtain
[k\]s+1{u}s+1 = [E]S{u}s + {F}s,s+1
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Time-dependent problems

[ﬁ]s+1{u}s+1 = [R]s{u}s + {F}s,s+1 (I)
where

K], . = [M]+ a1[K]s41, [K]s = [M] — a,[K];

s+1
{F}s,s+1 = Ats+1[a{F}s+1 + (1 — a){F}s]

a; = altgyq,a; = (1 — a)Atgyy

(J)

Note that, in deriving Egs. (i) and (j), it has been assumed that
[M] is independent of time and that the time step is nonuniform
Equations (i) and (j) are valid for a typical finite element whose
semidiscretized equations are of the form Eq. (a):

[M{u} + [K{u} = {F}
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Time-dependent problems

NOTE:

Egs. (i) and (j) hold for any problem, independent of the
dimension and method of spatial approximation as long as the
end result is Eq. (a)

The assembly, imposition of boundary conditions, and solution
of the assembled equations are the same as described before
for steady-state problems. Calculation of [K] and {F} at time t =
0 requires knowledge of the initial conditions {u}, and the time
variation of {F}

For « = 0 (the forward difference scheme), we obtain [K] =
[M]. If matrix [M] is diagonal, (i) becomes

n
1 — .
uitt = —— 2 KSu? + ES*™ |, (no sum on i)
M@ \ =
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Time-dependent problems

n
1 _
S+1 _ S.,S s,s+1 :
w =g E Kiu + F; , (no sum on i)
@) \ 7=

Thus, when a = 0, no inversion of the coefficient matrix is required
in solving for u;*'. Such a scheme is called explicit

A scheme is said to be implicit when it is not explicit (i.e an
iImplicit scheme requires the inversion of a coefficient matrix)

® explicit schemes are computational less expensive compared to
iImplicit schemes

® implicit schemes are more accurate and have larger critical
time steps
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Time-dependent problems

n
1
S+1 _ 7S ,,S s,s+1 .
w = Z Kiu; + F; , (no sum on i)

In conventional finite element formulations, [M] is seldom
diagonal. Therefore, explicit schemes in finite element analysis
can exist only if the time-approximation scheme is such that [K] =
[M] and [M] is diagonal

The matrix [M] is called the consistent (mass) matrix, and it is
not diagonal unless y); are orthogona functions over the element
domain

There are several ways to diagonalize mass matrices [M]
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Time-dependent problems

Consistency, Accuracy, and Stability

Error of the approximating:

® Truncation error introduced in approximating the derivative

® Round-off errors can be introduced because of the finite arithmetic
used in the computations

® Since the solution at time t.,, depends on the solution at time ¢, the
error can grow with time

Consistency:
® The numerical scheme is said to be consistent with the continuous
problem if the round-off and truncation errors go to zero as At~0

Stability:

Stability of a solution is a measure of the boundedness of the

approximate solution with time

® As discussed earlier, if the error is bounded, the solution scheme is
said to be stable
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Time-dependent problems

Accuracy:

Accuracy of a numerical scheme is a measure of the closeness between
the approximate solution and the exact solution. The size of the time
step can influence both accuracy and stability. When we construct an
approximate solution, we like it to converge to the true solution when the
number of elements or the degree of approximation is increased and the
time step At is decreased

® A time-approximation scheme is said to be convergent if, for fixed ts,
the numerical value {u}s converges to its true value {u(ts)} as At~0. If a
numerical scheme is stable and consistent it is also convergent

. . . . MPUTATIONAL MARINE HYDRODYNAMI
NA26018 Finite Element Analysis of Solids and Fluids CM SI{?IANGH?S JIAO TONG %ngf‘{“{,



Time-dependent problems

Hyperbolic Equations Time Approximation

Consider matrix equations of the form

[KI{u} + [CH{u} + [M[{u} = {F} (a)
subjected to initial conditions
{w(0)} = {uo}, (1 (0)} = {vo} (b)

® Such equations arise in structural dynamics, where [M] denotes
mass matrix, [C] the damping matrix, and [K] the stiffness
matrix

® The damping matrix [C] is often taken to be a linear
combination of the mass and stiffness matrices, [C] = 5;[M] +
B,|K], where g, and 3, are determined from physical
experiments

® In present study, we will nhot consider damping (i. e, [C] = 0).

® Transient analysis of both bars and beams lead to equations of
the type given in (a) and (b)
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Time-dependent problems

(K10} + [Cl@ + [MI{ii} = (F) (@)
w0} = {wo}, (@(0)} = {vo) (b)
Axial Motion of Bars, [C] =0

Xa dw¢ d €
k5= | [a(x) i +c(x)¢f¢,]dx Mg = [ aoutyfix

a

X
Transverse Motion of Euler-Bernoulli Beams, [C] =

dyf dp; jxa do; dqbf
e — M§ = AdE b I dx,
K La El T dx dx, . pAd; p;dx +p T dx X

Transverse Motion of Timoshenko Beams
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Time-dependent problems

Numerical Methods For Second-order Time Derivatives:

There are several numerical methods available to approximate the
second-order time derivatives and convert differential equations
to algebraic equations

® Newmark family of time-approximation schemes is widely used
in structural dynamics

® Other methods, such as the Wilson method, Houbolt method
can also be used to develop the algebraic equations from the
second-order differential equations

Here we consider the Newmark family of approximation schemes
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Time-dependent problems

Newmark's scheme

In the Newmark method, the function and its first time derivative
are approximated according to

1
{u}s+1 = {u}s + At{u}s + E (At)z{u}sﬂ/ (C)
{11 = {Uslii}s 40 At (d)
lii}s1o = (1 — O){ii}s + Oii}syq (e)

a and y(= 2pB) are parameters that determine the stability and
accuracy of the scheme Equations (c) and (d) can be viewed as
Taylor’s series expansions of u and u. The following schemes are
special cases of (c) and (d)
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Time-dependent problems

a= % =20 = 1 constant — average accleration method (stable)
a= % = 2 = = linear accleration method ( conditionally stable)
a = %,y = 2B = 0 Central dif ference method (conditionally stable)
a = % =20 = g Galerkin method (stable)

a= %,y = 2 = 2 Backward dif ference method (stable)

For all schemes in which y < a and a > 0.5, the stability

requirement is ~1/2
1
At < Aty = lz w?nax(“ —-v)

where wmax is the maximum natural frequency of the system
without [C]:

(IM] = w?[K]){u} = {F}

CMH COMPUTATIONAL MARINE HYDRODYNAMICS LAB
SHANGHAI JIAO TONG UNIVERSITY

NA26018 Finite Element Analysis of Solids and Fluids




Time-dependent problems

Fully Discretized Finite Element Equations

Eliminating{ii},,,from Eqs. (c¢) and (d) and writing the result for
{u};+1, We obtain

{Wsr1 = ag({utsyq — {uls) — a{it}s — agliils (f)
Ag =ﬁ,a7 =%— 1,ag = (%— 1>At

Now premultiplying Eq. (c) with [M],,,

(dses = (s + A0y +5 (402t
X [M]s44 X [M]s41

Substituting for [M].,{ii};.,from Eq (a):

[Ku} + (Ou} + [MIu} = {F}
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Time-dependent problems

We obtain

([M]s+1 + IB(At)Z[K]s+1){u}s+1 = [M]S+1{b}S + ,B(At)Z[F]s+1
_IB(At)Z[F]s+1{u}S+1

where (b}, = ful; + At + (1~ P)(A0)il,

Now, multiplying throughout with a; = 1/[8(At)?]
(a3[M]s4q + {K}soi){utsrr = az[M]541{b}s + [Flsi1 — [Clsr{itdsiq
Using (f):
{is11 = ag({utsr1 — {uls) — az{t}s — agliifs for {u}.4

We obtain the final result

[E]s+1{u}5+1 - [F]s,s+1
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Time-dependent problems

[R\]s;+1{7't}5"'1 - [F]S,s+1

where
[R]S+1 = [K]s41 + az[M]s41 + a6[Cls4q
{F}, o0y = Flsin + M]s41{AYs + [Cls4a{Bs
{A}s = az{b}s = asiu}s + ag{i}s + as{ii)s
{B}s = aglu}s + az{u}s + aglil)s
az = m,% = az4t, as = ;— 1

Note:

® The calculation of [K] _and {F} _ requires knowledge of the
initial conditions {u},,{u},, and {ii},. In practice, we do not know

{l}o

® As an approximation, it can be calculated from (a)

[K{u} + (O{u} + [M{u} = {F}
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Time-dependent problems

we often assume that the applied force is zero at ¢t = 0

{i}o = M7 ({F}o — [KN{u}o — [CHu}o)

At the end of each time step, the new velocity vector{i}..,and
acceleration vector {ii}.,, are computed using

{i}s11 = ag({u}s41 — {uls) — ag{i}s — astiils
{u}s+1 = {u}s + az{ﬁ}s + al{u}s+1
a, = adt,a, = (1 — a)At

The remaining procedure stays the same as in static problems
The fully discretized model is based on the assumption that y = 0.

Obviously, for centered difference scheme (y = 0), the formulation
must be modified
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Time-dependent problems

Mass Lumping

Recall from the time approximation of parabolic equations that
use of the forward difference scheme (i.e, a = 0) results in the

following time marching scheme

[ ]S+1{ }s+1 — [ ]s{u}s + [F]s,s+1

:E:SH [M] + a4 (K] 541,
K. = [M] - ay K],
Flss41 = AtspqlafFlerr + (1 — a){F}]

a, = alte,,a, = (1 — a)Atg,

[M€J{u}ssq = (IM®] = At[K® Dius + At{F ]

| CMHL SR et sia Yane oxioensine
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Time-dependent problems

(M€ {use1 = (IM®] = At[K°D{u}s + At{FC}s

The mass matrix [Me] derived from the weighted-integral
formulations of the governing equation is called the consistent
mass matrix

® [M¢]is symmetric positive-definite and nondiagonal

® Solution of the global equations requires inversion of the
assembled mass matrix

® If the mass matrix is diagonal, then the assembled equations
can be solved directly (i.e, without inverting a matrix) and thus
saving computational time

N
(UDs+r = Myt My (U — Atz KI](U])S + At(F])S
=1

® The explicit nature of has motivated us to find rational ways of
diagonalizing the mass matrix
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Time-dependent problems

There are several ways of constructing diagonal mass matrices,
also known as lumped matrices

® Row-sum lumping techniques
® Proportional lumping techniques

Row-Sum Lumping

The sum of the elements of each row of the consistent mass
matrix is used as the diagonal element

i Xb Xb
Mj; = 2] pY;i Y] dx =j pidx
j=1"%a

Xa
n

¢ =1 of the interpolation functions is used
j=1

: h
When p is constant, [m¢], = Pze [é (1)] (linear element)
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Time-dependent problems

oh,[1 0 0O
[M¢], =—=]|0 4 0| (quadratic element)
°lo 0 1

Compare these lumped mass matrices with the consistent mass
matrices

phe [2 1] .
e —_
[M€], = 11 2 (linear element)
on[4 2 -1
3Oe 2 16 2 | (quadratic element)
-1 2 4

[Me]c =

Here subscripts L and C refer to lumped and consistent mass
matrices, respectively
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Time-dependent problems

Proportional Lumping

Here the diagonal elements of the lumped mass matrix are
computed to be proportional to the diagonal elements of the
consistent mass matrix while conserving the total mass of the

element : X1 X1 n
Mg =a | pvewtdxa=| pdx/Y | pwtus dx
Xq Xa i=1 "~ Xa
NOTE:

For constant p, proportional lumping gives the same lumped mass
matrices as those obtained in the row-sum technique for the
Lagrange linear and quadratic elements
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Time-dependent problems

The use of a lumped mass matrix in transient analyses can save
computational time in two ways.

1. For forward difference schemes, lumped mass matrices result
In explicit algebraic equations not requiring matrix inversions

2. The critical time step required for conditionally stable schemes
Is larger, and hence less computational time is required when
lumped mass matrices are used

To see this, consider the stability criterion:

1 ~1/2
- Whax(@ = ¥)
2 max y

for thecasea =1/2and g = 0.

At S Atcri —
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Time-dependent problems

For a one linear element model of a uniform bar of stiffness EA
and mass p4, fixed at the left end, the eigenvalue problem with a
consistent mass matrix is

EA[ 1 —1] ,pAR[2 1 {Ul} _ {01
—_— —_— a) D — pu—
hl-1 1 6 11 2[)U:) ™ |0}
Since U; = 0 and Qi = 0, we have
, EA /pAh 3E
a) — —_—
h/ 3 ph?
Substituting this into the critical time step relation, we have
(Aterdc = 2/ ®max = h(4p/3E)"/?
If we use the lumped matrix, w is given by
w = (2E/p)'/?/h
and the critical time step is

(Atcri)c = h(zp/E)l/Z > (Atcri)C
Thus, explicit schemes require larger time steps than implicit
schemes
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Time-dependent problems

Example 1 Transient heat transfer(parabolic equation)

Consider the transient heat conduction problem described by the
differential equation

ou 0%u
dt 0dx?

=0for0<x<1

with boundary conditions

ou
= — (1 =

and initial condition
u(x,0) =1.0

where u is the nondimensionalized temperature
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Time-dependent problems

The problem at hand is a special case of
9, 6u+82 b62u+ +6+62 (.
ox\%ax) Y oxz\Paxz) Tt Y gt g =/
With a = 1,b = O,CO = 0,C1 = 1,C2 — Oand f =0

[Kl{u} + [M']{@} + [M?]{u} = {F}

[K]1=[K"] + [K*] + [M°]

o _ ™ T
M;; = Co Yiyjdx, Mj; _j c1 Yipjdx
Xq Xq
Xp Xp dl/) dl/)
2 _ | 1 i AY;j
M;; . c; Yipdx, Ki; jx Tx dx X
Xp le/) d2¢ R
2 _ i J _
K{ = . b TxZ dx? dx, F; = jxa Y, f dx + Q;

CVIHL Sommous e R o
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Time-dependent problems

The finite element model is
[Me]{u} + [K¢[{u} = {Q°}

Xb b dip¢ dyp$
= [orapan = o

Xa Xa

For the choice of linear interpolation functions, the semidiscrete
equations of a typical element are

Elz 1] fus +i[ 1 —1] ur| _ |Q1

6 11 21|us)  h.l-1 1]|us 0}

where he is the length of the element. Use of the a-family of
approximation results in the equation

([M°e] + Ata[K°D{u‘}ssq = (IM€] = 4t(1 — @) [K°Diu)s + At(@[QCs+1 + (1 — ) [Q°]5)
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Time-dependent problems

First consider a one-element mesh, we have

1
3
1
6

At

h+a—

h
At

h—a—

h

1
6
1
3

h—a—

h+a—

At

h
At

h |

L6

Lo
NE “h

1 At
h+(1—oc)7

where (,; = oz(Qil)S+1 + (1 - “)(Qil)s

b.c.

u(0,t) =0,

ou
a(l, t)=0

and i.c.

The boundary conditions of the problem require

(U)s =0, (Q%)S =0 foralls>0(i.e.,t>0)
However, the initial condition requires
U (01 (x) + U, (0 (x) =1

NA26018 Finite Element Analysis of Solids and Fluids

L ra-
- —a)— _
61 h {51} +At{g1}
§h_(1_a) 2)s41 QZ
u(x,0) =1.0
U1(0) =0
Uz(o) =0
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Time-dependent problems

Using the boundary conditions, we can write for the one-element

model < 1 At

1 At
—+ a—> (Uz)s41 =|5h—(1- a)f (U2)s

3h h 3
which can be solved repeatedly for U, at different times, s =0,1, ...

NOTE:

Repeated use of above Eq. can cause the temporal approximation
error to grow with time depending on the value of «. As noted
earlier, the forward difference scheme (a = 0) is a conditionally
stable scheme
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Time-dependent problems

To determine the critical time step for the one-element mesh. We
can first calculate the maximum eigenvalue of the associated
system

® By using the stability condition, for the forward difference

scheme, the time step should be smaller than 4t.,.; = 0.6667;
otherwise, the solution will be unstable

2

— 2 — A A ;=
A=3/h*=3 t < Atgy a =201

For a two-element mesh, we have (h,=h,=h=0.5): the condensed
equations of the timeemarehing scheme are given by

_2h+2 At 1h At 'Zh 2(1 )At 1h+(1 )At'
37T 6 ah{”z} _ 13 “n 6 ah{Uz}
1 A 1 A{lusf,,, T |1 At 1 Us
“h—a— - — Ch+(1-a)— <-h-(1- s
-6h a— 3h+ah_ -6h+( a)h 3h ( oc)_

. . . . MPUTATIONAL MARINE HYDRODYNAMI
NA26018 Finite Element Analysis of Solids and Fluids CMH SEIANGH% JIAO TONG %ng#f,



Time-dependent problems

Wwith (U,), and (U;),, the forward difference scheme yield
el ol =Sl Tl e
611 2 s+1 “ell+p 2-p U3S"u_h2

Similarly, we can calculate the maximum eigenvalue of the
associated 2-mesh system,

1o Ah?
6
By using the stability condition, we obtain the critical time step

At.; = 0.0631
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Time-dependent problems

Discussion:

For (unconditionally) stable schemes (a« > 0.5), there is no
restriction on the time step (e.g, Crank-Nicolson method)

However, to obtain a sufficiently accurate solution, the time
step must be taken as a fraction of 4t_,;

The accuracy of the solution also depends on the mesh size. As
this is decreased (i.e. the number of elements is increased).

At.; decreased
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Time-dependent problems

Solutions predicted by meshes of one, two, or four linear or
quadratic elements are compared
| 50 J ] T S 6 R

1 Ar = 0.05
{
3! ‘ R
— ¢ | quadratic element (¢ = (0.5)
~ s a | gquadratic clement (¢ = 0.0) =
SO » 2 linear elements (o= 0.5) S
= A a2 hinear elements (o2 = 0.4)
¥ .
=
5 .
‘II:):
()50 — oo
(1.00) TR 7 I R A l | R R R

0.0 0.5

Time, ¢

The convergence of the solution with increasing number of
elements is clear
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