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NA26018 Finite Element Analysis of  Solids and Fluids 

Time-dependent problems

Introduction
In this section, 
 we develop the finite element models of one-dimensional time-

dependent problems and
 describe time approximation schemes to convert ordinary 

differential equations in time to algebraic equations. 

We consider finite element models of the time-dependent version 
of the differential equations studied previously. These include 
 The second-order（in space）parabolic equations 
（i.e, first time derivative）

 The second-order hyperbolice quations 
（i.e, second time derivative）

 The fourth-order hyperbolic equations 
arising in connection with the bending of beams
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Time-dependent problems

Finite element models of time-dependent problems can be 
developed in two alternative ways: 

(a) coupled formulation in which the time 𝑡 is treated as an 
additional coordinate along with the spatial coordinate 𝑥

(b)decoupled formulation where time and spatial variations are 
assumed to be separable

Thus, the approximation in the two formulations takes the form

  𝜓𝑗
𝑒 𝑥, 𝑡 are time-space (two-dimensional) interpolation functions 

  𝑢𝑗
𝑒are the nodal values that are independent of 𝑥 and 𝑡, 

 𝜓𝑗
𝑒 𝑥 ) are the usual one-dimensional interpolation functions in spatial coordinate 

𝑥 only

 𝑢𝑗
𝑒 𝑡 are functions of time 𝑡 only 

𝑢 𝑥, 𝑡 ≈ 𝑢ℎ
𝑒 𝑥, 𝑡 =  

𝑗=1

𝑛

 𝑢𝑗
𝑒  𝜓𝑗

𝑒 𝑥, 𝑡 coupled formulation

𝑢 𝑥, 𝑡 ≈ 𝑢ℎ
𝑒 𝑥, 𝑡 =  

𝑗=1

𝑛

𝑢𝑗
𝑒 𝑡 𝜓𝑗

𝑒 𝑥 coupled formulation
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Time-dependent problems

Space-time coupled finite element formulations are not common, 
and they have not been adequately studied. In this section, we 
consider the space-time decoupled formulation only

The space-time decoupled finite element formulation of time-
dependent problems involves 2 steps：

1. Spatial approximation, 

 The solution 𝑢 of the equation under consideration is approximate 
by decoupled form, and the spatial finite element model of the 
equation is developed using the procedures of static or steady-
state problems while carrying all time-dependent terms in the 
formulation. 

 This step results in a set of ordinary differential equations （i.e, a 
semidiscrete system of equations） in time for the nodal variables 

𝑢𝑗
𝑒 𝑡 of the element. Decoupled Eq. represents the spatial 

approximation of 𝑢 for any time 𝑡
 When the solution is separable into functions of time only and 

space only, 𝑢(𝑥, 𝑡) = 𝑇(𝑡)𝑋(𝑥), the approximation is clearly justified 
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Time-dependent problems

 Even when the solution is not separable, decoupled Eq. can 
represent a good approximation of the actual solution provided a 
sufficiently small time step is used

2. Temporal approximation

 The system of ordinary differential equations are further 
approximated in time, often using finite difference formulae for 
the time derivatives

 This step allows conversion of the system of ordinary differential 
equations into a set of algebraic equations among 𝑢 at time 𝑡𝑠+1 =
(𝑠 + 1)Δ𝑡, where Δ𝑡 is the time increment and 𝑠 is a nonnegative 
integer
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All time approximation schemes seek to find 𝑢𝑗 at time 𝑡𝒔 + 1 using 

the values of 𝑢𝑗 from previous times：

Thus, at the end of the two-stage approximation, we have a 
continuous spatial solution at discrete intervals of time

Note: the approximate solution has the same form as that in the 
separation-of variables technique used to solve boundary value
and initial value problems

compute 𝑢 𝑠+1 using 𝑢 𝑠, 𝑢 𝑠−1, …

𝑢 𝑥, 𝑡𝑠 ≈ 𝑢ℎ
𝑒 𝑥, 𝑡𝑠 =  

𝑗=1

𝑛

𝑢𝑗
𝑒 𝑡𝑠 𝜓𝑗

𝑒 𝑡𝑠 𝑠 = 0,1, …
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Time-dependent problems

Note: By taking nodal values to be functions of time, we see that 
the spatial points in an element take on different values for 
different times

𝑢 𝑥, 𝑡𝑠 ≈ 𝑢ℎ
𝑒 𝑥, 𝑡𝑠 =  

𝑗=1

𝑛

𝑢𝑗
𝑒 𝑡𝑠 𝜓𝑗

𝑒 𝑡𝑠 𝑠 = 0,1, …
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Time-dependent problems

We study the details of the two steps by considering a model 
differential equation that contains both 
 second-and fourth-order spatial derivatives 
 first-and second-order time derivatives

The above equation is subject to appropriate boundary and initial 
conditions. The boundary conditions are of the form

at 𝑥 = 0, 𝐿, and the initial conditions involve specifying

−
𝜕

𝜕𝑥
𝑎
𝜕𝑢

𝜕𝑥
+

𝜕2

𝜕𝑥2
𝑏
𝜕2𝑢

𝜕𝑥2
+ 𝑐0𝑢 + 𝑐1

𝜕𝑢

𝜕𝑡
+ 𝑐2

𝜕2𝑢

𝜕𝑡2
= 𝑓 𝑥, 𝑡

𝑠𝑝𝑒𝑐𝑖𝑓𝑦 𝑢 𝑥, 𝑡 𝑜𝑟 − 𝑎
𝜕𝑢

𝜕𝑥
+

𝜕

𝜕𝑥
𝑏
𝜕2𝑢

𝜕𝑥2

𝑠𝑝𝑒𝑐𝑖𝑓𝑦
𝜕𝑢

𝜕𝑥
𝑜𝑟 𝑏

𝜕2𝑢

𝜕𝑥2

𝑐2𝑢 𝑥, 0 𝑎𝑛𝑑 𝑐2  𝑢 𝑥, 0 + 𝑐1𝑢 𝑥, 0  𝑢 ≡  𝜕𝑢 𝜕𝑡
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Above equation describes following physical roblems

a. Heat transfer and fluid flow: 
𝒄𝟐 = 𝟎 𝒂𝒏𝒅 𝒃 = 𝟎

b. Transverse motion of a cable: 
𝒂 = 𝑻, 𝒄𝟎 = 𝟎, 𝒃 = 𝟎, 𝒄𝟏 = 𝝆, 𝒄𝟐 = 𝟎

c. The longitudinal motion of a rod: 
𝒂 = 𝑬𝑨, 𝒃 = 𝟎; if damping is not considered,𝒄𝟏 = 𝟎, 𝒄𝟐 = 𝝆𝑨

d. The transverse motion of an Euler-Bernoulli beam: 
𝒂 = 𝟎, 𝒃 = 𝑬𝑰, 𝒄𝟎 = 𝒌, 𝒄𝟏 = 𝟎, 𝒄𝟐 = 𝝆𝑨

−
𝜕

𝜕𝑥
𝑎
𝜕𝑢

𝜕𝑥
+

𝜕2

𝜕𝑥2
𝑏
𝜕2𝑢

𝜕𝑥2
+ 𝑐0𝑢 + 𝑐1

𝜕𝑢

𝜕𝑡
+ 𝑐2

𝜕2𝑢

𝜕𝑡2
= 𝑓 𝑥, 𝑡
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Time-dependent problems

Semidiscrete Finite Element Models

The semidiscrete formulation involves approximation of the 
spatial variation of the dependent variable. The formulation 
follows essentially the same steps as described in previous

 The first step involves the construction of the weak form of the 
equation over a typical element

 In the second step, we develop the finite element model by 
seeking approximation of the decoupled form
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−
𝜕

𝜕𝑥
𝑎
𝜕𝑢

𝜕𝑥
+

𝜕2

𝜕𝑥2
𝑏
𝜕2𝑢

𝜕𝑥2
+ 𝑐0𝑢 + 𝑐1

𝜕𝑢

𝜕𝑡
+ 𝑐2

𝜕2𝑢

𝜕𝑡2
= 𝑓 𝑥, 𝑡

0 =  
𝑥𝑎

𝑥𝑏

𝑤 −
𝜕

𝜕𝑥
𝑎
𝜕𝑢

𝜕𝑥
+

𝜕2

𝜕𝑥2
𝑏
𝜕2𝑢

𝜕𝑥2
+ 𝑐0𝑢 + 𝑐1

𝜕𝑢

𝜕𝑡
+ 𝑐2

𝜕2𝑢

𝜕𝑡2
− 𝑓 𝑑𝑥

=  
𝑥𝑎

𝑥𝑏 𝜕𝑤

𝜕𝑥
𝑎
𝜕𝑢

𝜕𝑥
+

𝜕2𝑤

𝜕𝑥2
𝑏
𝜕2𝑢

𝜕𝑥2
+ 𝑐0𝑤𝑢 + 𝑐1𝑤

𝜕𝑢

𝜕𝑡
+ 𝑐2𝑤

𝜕2𝑢

𝜕𝑡2
− 𝑤𝑓 𝑑𝑥

+ 𝑤 −𝑎
𝜕𝑢

𝜕𝑥
+

𝜕

𝜕𝑥
𝑏
𝜕2𝑢

𝜕𝑥2
+

𝜕𝑤

𝜕𝑥
−𝑏

𝜕2𝑢

𝜕𝑥2
𝑥𝑎

𝑥𝑏

=  
𝑥𝑎

𝑥𝑏

𝑎
𝜕𝑤

𝜕𝑥

𝜕𝑢

𝜕𝑥
+ 𝑏

𝜕2𝑤

𝜕𝑥2

𝜕2𝑢

𝜕𝑥2
+ 𝑐0𝑤𝑢 + 𝑐1𝑤

𝜕𝑢

𝜕𝑡
+ 𝑐2𝑤

𝜕2𝑢

𝜕𝑡2
− 𝑤𝑓 𝑑𝑥

−  𝑄1𝑤 𝑥𝑎 −  𝑄3𝑤 𝑥𝑏 −   𝑄2 −
𝜕𝑤

𝜕𝑥
𝑥𝑎

−   𝑄4 −
𝜕𝑤

𝜕𝑥
𝑥𝑏
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Next, we assume that u is interpolated by an expression of the 
decoupled form:

This equation implies that, at any arbitrarily fixed time 𝑡 > 0， the 

function 𝑢 can be approximated by a linear combination of the 𝜓𝑗
𝑒

and 𝑢𝑗
𝑒 𝑡 ， with 𝑢𝑗

𝑒 𝑡 being the value of 𝑢 at time 𝑡 at the jth node 
of the element Omegae. In other words, the time and spatial 
variations of 𝑢 are separable. 

 𝑄1 = −𝑎
𝜕𝑢

𝜕𝑥
+

𝜕

𝜕𝑥
𝑏
𝜕2𝑢

𝜕𝑥2
𝑥𝑎

,  𝑄2 = 𝑏
𝜕2𝑢

𝜕𝑥2
𝑥𝑎

 𝑄3 = − −𝑎
𝜕𝑢

𝜕𝑥
+

𝜕

𝜕𝑥
𝑏
𝜕2𝑢

𝜕𝑥2
𝑥𝑏

,  𝑄4 = − 𝑏
𝜕2𝑢

𝜕𝑥2
𝑥𝑏

𝑢 𝑥, 𝑡 ≈ 𝑢ℎ
𝑒 𝑥, 𝑡 =  

𝑗=1

𝑛

𝑢𝑗
𝑒 𝑡 𝜓𝑗

𝑒 𝑥 decoupled formulation
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 This assumption is not valid, in general, because it may not be 
possible to write the solution 𝑢(𝑥, 𝑡) as the product of a function 
of time only and a function of space only

 However, with sufficiently small time steps, it is possible to 
obtain accurate solutions to even those problems for which the 
solution is not separable in time and space

 The finite element solution that we obtain at the end of the 
analysis is continuous in space but not in time

We only obtain the finite element solution in the form

Where 𝑢𝑗
𝑠 𝑒

is the value of 𝑢(𝑥, 𝑡) at time 𝑡 = 𝑡𝑠and node 𝑗 of the 
element Omegae 

𝑢 𝑥, 𝑡𝑠 =  

𝑗=1

𝑛

𝑢𝑗
𝑒 𝑡𝑠 𝜓𝑗

𝑒 𝑡𝑠 =  

𝑗=1

𝑛

𝑢𝑗
𝑠 𝑒

𝜓𝑗
𝑒 𝑥 𝑠 = 0,1, …
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Substituting 𝑤 = 𝜓𝑗
𝑒(𝑥)（to obtain the ith equation of the system）

and substitute decoupled approximation into weak form, we 
obtain

𝑢 𝑥, 𝑡 ≈ 𝑢ℎ
𝑒 𝑥, 𝑡 =  

𝑗=1

𝑛

𝑢𝑗
𝑒 𝑡 𝜓𝑗

𝑒 𝑥 decoupled formulation

0 =  
𝑥𝑎

𝑥𝑏

𝑎
𝜕𝑤

𝜕𝑥

𝜕𝑢

𝜕𝑥
+ 𝑏

𝜕2𝑤

𝜕𝑥2

𝜕2𝑢

𝜕𝑥2
+ 𝑐0𝑤𝑢 + 𝑐1𝑤

𝜕𝑢

𝜕𝑡
+ 𝑐2𝑤

𝜕2𝑢

𝜕𝑡2
− 𝑤𝑓 𝑑𝑥

−  𝑄1𝑤 𝑥𝑎 −  𝑄3𝑤 𝑥𝑏 −   𝑄2 −
𝜕𝑤

𝜕𝑥
𝑥𝑎

−   𝑄4 −
𝜕𝑤

𝜕𝑥
𝑥𝑏
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In matrix form, we have

0 =  
𝑥𝑎

𝑥𝑏

 𝑎
𝑑𝜓𝑖

𝑑𝑥
 

𝑗=1

𝑛

𝑢𝑗

𝑑𝜓𝑗

𝑑𝑥
+ 𝑏

𝑑2𝜓𝑖

𝑑𝑥2  

𝑗=1

𝑛

𝑢𝑗

𝑑2𝜓𝑗

𝑑𝑥2 + 𝑐0𝜓𝑖  

𝑗=1

𝑛

𝑢𝑗𝜓𝑗

 +𝑐1𝜓𝑖  

𝑗=1

𝑛
𝑑𝑢𝑗

𝑑𝑡
𝜓𝑗 + 𝑐2𝜓𝑖  

𝑗=1

𝑛
𝑑2𝑢𝑗

𝑑𝑡2
𝜓𝑗 − 𝜓𝑖𝑓 𝑑𝑥

−  𝑄1𝜓𝑖 𝑥𝑎 −  𝑄3𝜓𝑖 𝑥𝑏 −   𝑄2 −
𝑑𝜓𝑗

𝑑𝑥
𝑥𝑎

−   𝑄4 −
𝑑𝜓𝑗

𝑑𝑥
𝑥𝑏

=  

𝑖=1

𝑛

𝐾𝑖𝑗
1 + 𝐾𝑖𝑗

2 𝑢𝑗 + 𝑀𝑖𝑗
1
𝑑𝑢𝑗

𝑑𝑡
+ 𝑀𝑖𝑗

2
𝑑2𝑢𝑗

𝑑𝑡2
− 𝐹𝑖

𝐾 𝑢 + 𝑀1  𝑢 + 𝑀2  𝑢 = 𝐹
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Equation (a) is a hyperbolic equation, and it contains the 
parabolic equation as a special case (set [𝑀] = [0]). The time 
approximation of（𝑎） for these two cases will be considered 
separately

where

(a)𝐾 𝑢 + 𝑀1  𝑢 + 𝑀2  𝑢 = 𝐹

𝐾 = 𝐾1 + 𝐾2 + 𝑀0

𝑀𝑖𝑗
0 =  

𝑥𝑎

𝑥𝑏

𝑐0 𝜓𝑖𝜓𝑗𝑑𝑥,𝑀𝑖𝑗
1 =  

𝑥𝑎

𝑥𝑏

𝑐1 𝜓𝑖𝜓𝑗𝑑𝑥

𝑀𝑖𝑗
2 =  

𝑥𝑎

𝑥𝑏

𝑐2 𝜓𝑖𝜓𝑗𝑑𝑥, 𝐾𝑖𝑗
1 =  

𝑥𝑎

𝑥𝑏

𝑎
𝑑𝜓𝑖

𝑑𝑥

𝑑𝜓𝑗

𝑑𝑥
𝑑𝑥

𝐾𝑖𝑗
2 =  

𝑥𝑎

𝑥𝑏

𝑏
𝑑2𝜓𝑖

𝑑𝑥2

𝑑2𝜓𝑗

𝑑𝑥2
𝑑𝑥, 𝐹𝑖 =  

𝑥𝑎

𝑥𝑏

𝜓𝑖𝑓 𝑑𝑥 +  𝑄𝑖
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Parabolic Equations-Time Approximation

The time approximation is discussed with the help of a single 
first-order differential equation 
 Suppose that we wish to determine 𝑢(𝑡) for 𝑡 > 0 such that 𝑢(𝑡)

satisfies

where 𝑎 ≠ 0， 𝑏, and 𝑢0 are constants, and 𝑓 is a function of time 𝑡. 
 The exact solution of the problem consists of two parts: the 

homogeneous and particular solutions. The homogeneous 
solution is

The particular solution is

𝑎
𝑑𝑢

𝑑𝑡
+ 𝑏𝑢 = 𝑓 𝑡 , 0 < 𝑡 < 𝑇 𝑎𝑛𝑑 𝑢 0 = 𝑢0

𝑢ℎ 𝑡 = 𝐴𝑒−𝑘𝑡, 𝑘 =
𝑏

𝑎

𝑢𝑝 𝑡 =
1

𝑎
𝑒−𝑘𝑡  

0

𝑡

𝑒𝑘𝜏𝑓 𝜏 𝑑𝜏
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The complete solution is given by

 In the finite difference solution of parabolic Eq., we replace the 
derivatives with their finite difference approximation

 The most commonly used scheme is the a family of 
approximation in which a weighted average of the time 
derivatives at two consecutive time steps is approximated by 
linear interpolation of the values of the variable at the two 
steps（as in Fig. next）

us, denotes the value of 𝑢(𝑡) at time

is the sth time step

𝑢 𝑡 = 𝑒−𝑘𝑡 𝐴 +
1

𝑎
 
0

𝑡

𝑒𝑘𝜏𝑓 𝜏 𝑑𝜏

1 − 𝛼  𝑢𝑠 + 𝛼  𝑢𝑠+1 =
𝑢𝑠+1 − 𝑢𝑠

∆𝑡𝑠+1
for 0 ≤ 𝛼 ≤ 1

𝑡 = 𝑡𝑠 =  
𝑖=1

𝑠

∆𝑡𝑖
∆𝑡𝑠 = 𝑡𝑠 − 𝑡𝑠−1
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If the total time [0, 𝑇] is divided into equal time steps, then 𝑡𝑠 =
𝑠Δ𝑡, and

(a)

(b)

When 𝛼 = 0， Eq.(a) gives

This is the slope of the function 𝑢 𝑡 at time 𝑡 = 𝑡𝑠 based on the 
values of the function at time ts and𝑡𝑠 + 1
 Since the value of the function from a step in front is used, it is 

termed a forward difference approximation

1 − 𝛼  𝑢𝑠 + 𝛼  𝑢𝑠+1 =
𝑢𝑠+1 − 𝑢𝑠

∆𝑡𝑠+1
for 0 ≤ 𝛼 ≤ 1

𝑢𝑠+1 = 𝑢𝑠 + 𝛥𝑡  𝑢𝑠+𝛼

 𝑢𝑠+𝛼 = 1 − 𝛼  𝑢𝑠 + 𝛼  𝑢𝑠+1 for 0 ≤ 𝛼 ≤ 1

 𝑢𝑠 =
𝑢𝑠+1 − 𝑢𝑠

∆𝑡𝑠+1
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When 𝛼 = 1, we obtain

(a)

which is termed, for obvious reason, the backward difference 
approximation

1 − 𝛼  𝑢𝑠 + 𝛼  𝑢𝑠+1 =
𝑢𝑠+1 − 𝑢𝑠

∆𝑡𝑠+1
for 0 ≤ 𝛼 ≤ 1

 𝑢𝑠+1 =
𝑢𝑠+1 − 𝑢𝑠

∆𝑡𝑠+1
⟶  𝑢𝑠 =

𝑢𝑠 − 𝑢𝑠−1

∆𝑡𝑠
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Time-dependent problems

Recall the parabolic Eq.:

Note that it is valid for all times 0 < 𝑡 < 𝑇. In particular, it is valid 
at times 𝑡 = 𝑡𝑠, and 𝑡 = 𝑡𝑠 + 1. Hence, 

Substituting the above expressions into finite difference 
approximation (a):

(a)

Solving for 𝑢𝑠 + 1,we obtain

𝑎
𝑑𝑢

𝑑𝑡
+ 𝑏𝑢 = 𝑓 𝑡 , 0 < 𝑡 < 𝑇 𝑎𝑛𝑑 𝑢 0 = 𝑢0

 𝑢𝑠 =
1

𝑎
𝑓𝑠 − 𝑏𝑢𝑠 ,  𝑢𝑠+1 =

1

𝑎
𝑓𝑠+1 − 𝑏𝑢𝑠+1

1 − 𝛼  𝑢𝑠 + 𝛼  𝑢𝑠+1 =
𝑢𝑠+1 − 𝑢𝑠

∆𝑡𝑠+1
for 0 ≤ 𝛼 ≤ 1

1 − 𝛼 𝑓𝑠 − 𝑏𝑢𝑠 + 𝛼 𝑓𝑠+1 − 𝑏𝑢𝑠+1 = 𝑎
𝑢𝑠+1 − 𝑢𝑠

∆𝑡𝑠+1
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Time-dependent problems

Thus, above Eq. can be used repeatedly to march in time and 
obtain the solution at times 𝑡 = 𝑡𝑠 + 1，𝑡𝑠 + 2，…，𝑡𝑁, Ntime is the 
number of time steps required to reach the final 𝑇

At the very beginning, i. e 𝑠 = 0， the solution u is calculated using 
the initial value 𝑢0:

𝑎 + 𝛼𝛥𝑡𝑠+1𝑏 𝑢𝑠+1 = 𝑎 − 1 − 𝛼 𝛥𝑡𝑠+1𝑏 𝑢𝑠 + 𝛥𝑡𝑠+1 𝛼𝑓𝑠+1 + 1 − 𝛼 𝑓𝑠

𝑢𝑠+1 =
𝑎 − 1 − 𝛼 𝛥𝑡𝑠+1𝑏

𝑎 + 𝛼𝛥𝑡𝑠+1𝑏
𝑢𝑠 + 𝛥𝑡𝑠+1

𝛼𝑓𝑠+1 + 1 − 𝛼 𝑓𝑠
𝑎 + 𝛼𝛥𝑡𝑠+1𝑏

𝑢1 =
𝑎 − 1 − 𝛼 𝛥𝑡1𝑏

𝑎 + 𝛼𝛥𝑡1𝑏
𝑢0 + 𝛥𝑡1

𝛼𝑓1 + 1 − 𝛼 𝑓0
𝑎 + 𝛼𝛥𝑡1𝑏
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Time-dependent problems

We may also develop a time approximation scheme using the 
finite element method
 To this end, we consider the same parabolic problem

 We wish to determine 𝑢𝑠+1 in terms of 𝑢𝑠

The weighted-integral form of the parabolic over the time interval 
(𝑡𝑠, 𝑡𝑠+1) is

where 𝑢 is the weight function. Assuming a solution of the form

where 𝜓𝑗 𝑡 are interpolation functions of order (𝑛 − 1). The 
Galerkin finite element model is obtained by substituting the 
above approximation for 𝑢 and 𝑣 = 𝜓𝑖. We obtain

𝑎
𝑑𝑢

𝑑𝑡
+ 𝑏𝑢 = 𝑓 𝑡 , 0 < 𝑡 < 𝑇 𝑎𝑛𝑑 𝑢 0 = 𝑢0

0 =  
𝑡𝑠

𝑡𝑠+1

𝑣 𝑡 𝑎
𝑑𝑢

𝑑𝑡
+ 𝑏𝑢 − 𝑓 𝑑𝑡

𝑢 𝑡 ≈  

𝑗=1

𝑛

𝑢𝑗𝜓𝑗 𝑡



NA26018 Finite Element Analysis of  Solids and Fluids 

Time-dependent problems

 Equation is valid with the time interval (𝑡𝑠, 𝑡𝑠+1), and it 
represents a relationship be tween the values 𝑢1, 𝑢2, … , 𝑢𝑛, which 
are the values of 𝑢 at time𝑡𝑠, 𝑡𝑠 + Δ𝑡/(𝑛 − 1), 𝑡𝑠 + 2Δ𝑡/(𝑛 −
1), … , 𝑡𝑠+1, respectively

This would yield a multistep approximation scheme

To obtain a single-step approximation scheme, i.e., write 𝑢𝑠 + 1 in 
terms of 𝑢𝑠 only, we assume linear approximation (i.e. 𝑛 = 2)

For this choice of approximation, the Matrix form can be written 
as

𝐴 𝑢 = 𝐹

𝐴𝑖𝑗 =  
𝑡𝑠

𝑡𝑠+1

𝜓𝑖 𝑡 𝑎
𝑑𝜓𝑗

𝑑𝑡
+ 𝑏𝜓𝑗 𝑑𝑡 , 𝐹𝑖 =  

𝑡𝑠

𝑡𝑠+1

𝜓𝑖 𝑡 𝑓 𝑡 𝑑𝑡

𝑢 𝑡 = 𝑢𝑠𝜓1 𝑡 + 𝑢𝑠+1𝜓2 𝑡

𝜓1 𝑡 =
𝑡𝑠+1 − 𝑡𝑠

∆𝑡
𝑎𝑛𝑑 𝜓2 𝑡 =

𝑡 − 𝑡𝑠
∆𝑡
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Time-dependent problems

Assuming that 𝑢𝑠 is known, we solve for 𝑢𝑠+1 from the second 
equation

Recall, using Finite difference method, we get

By comparison, 
we find that the Galerkin scheme is a specia case of the a finite 
difference family of approximation, with 𝛼 = 2/3

𝑎

2
−1 1
−1 1

+
𝑏∆𝑡

6
2 1
1 2

𝑢𝑠

𝑢𝑠+1
=

∆𝑡

6

𝑓𝑠
2𝑓𝑠+1

𝑎 +
2𝑏∆𝑡

3
𝑢𝑠+1 = 𝑎 −

𝑏∆𝑡

3
𝑢𝑠 + ∆𝑡

𝑓𝑠
3

+
2𝑓𝑠+1

3

𝑎 + 𝛼𝛥𝑡𝑠+1𝑏 𝑢𝑠+1 = 𝑎 − 1 − 𝛼 𝛥𝑡𝑠+1𝑏 𝑢𝑠 + 𝛥𝑡𝑠+1 𝛼𝑓𝑠+1 + 1 − 𝛼 𝑓𝑠
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Time-dependent problems

Parabolic Equations-
Stable and Conditionally Stable Schemes

can be written in the form:

The operator 𝐴 is known as the amplification operator. Since us is 
an approximate solution, the error 𝐸𝑠 = 𝑢𝑎(𝑡𝑠) − 𝑢𝑠at time 𝑡𝑠 (where 
𝑢𝑎 is the exact solution) will influence the solution at 𝑡𝑠+1

𝑢𝑠+1 =
𝑎 − 1 − 𝛼 𝛥𝑡𝑠+1𝑏

𝑎 + 𝛼𝛥𝑡𝑠+1𝑏
𝑢𝑠 + 𝛥𝑡𝑠+1

𝛼𝑓𝑠+1 + 1 − 𝛼 𝑓𝑠
𝑎 + 𝛼𝛥𝑡𝑠+1𝑏

𝑢𝑠+1 = 𝐴 𝑢𝑠 + 𝐹𝑠,𝑠+1, 𝐴 =
𝑎 − 1 − 𝛼 𝛥𝑡𝑠+1𝑏

𝑎 + 𝛼𝛥𝑡𝑠+1𝑏

𝐹𝑠,𝑠+1 = 𝛥𝑡𝑠+1

𝛼𝑓𝑠+1 + 1 − 𝛼 𝑓𝑠
𝑎 + 𝛼𝛥𝑡𝑠+1𝑏
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Time-dependent problems

 The error will grow (i.e, Es will be amplified) as we march in time if 
the magnitude of the operator is greater than 1, |𝐴| > 1

 When the error grows without bound, the computational scheme 
becomes unstable (i.e, solution 𝑢𝑠+1 becomes unbounded with time)

 Therefore, in order for the scheme to be stable, it is necessary that 
|𝐴| ≤ 1：

𝑢𝑠+1 = 𝐴 𝑢𝑠 + 𝐹𝑠,𝑠+1, 𝐴 =
𝑎 − 1 − 𝛼 𝛥𝑡𝑠+1𝑏

𝑎 + 𝛼𝛥𝑡𝑠+1𝑏

𝑎 − 1 − 𝛼 𝛥𝑡𝑠+1𝑏

𝑎 + 𝛼𝛥𝑡𝑠+1𝑏
≤ 1

𝐹𝑠,𝑠+1 = 𝛥𝑡𝑠+1

𝛼𝑓𝑠+1 + 1 − 𝛼 𝑓𝑠
𝑎 + 𝛼𝛥𝑡𝑠+1𝑏



NA26018 Finite Element Analysis of  Solids and Fluids 

Time-dependent problems

The above equation places a restriction on the magnitude of the 
time step for certain values of 𝛼
 When the error remains bounded for any time step (i.e.,

condition is trivially satisfied for any value of Δ𝑡, the scheme is 
stable

 If the error remains bounded only when the time step
Δ𝑡 remains below certain value, the scheme is said to be 
conditionally stable

For different values of 𝛼, the time approximation scheme yields a 
different scheme. The following well-known time-approximation schemes 
along with their order of accuracy and stability should be noted

𝛼 =

0,
1

2
,

2

3
,

1,

The forward difference (or Euler) scheme (conditionally 

stable); order of accuracy=𝚶 ∆𝒕

The Crank-Nicolson scheme (stable);𝚶 ∆𝒕 𝟐

The Galerkin method (stable);𝚶 ∆𝒕 𝟐

The backward difference scheme (stable);𝚶 ∆𝒕
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