

CMHL SJTU COMPUTATIONAL MARINE HYDRODYNAMICS LAB 上海交大船舶与海洋工程计算水动力学研究中心

Class-4

NA26018

Finite Element Analysis of Solids and Fluids

dcwan@sjtu.edu.cn, http://dcwan.sjtu.edu.cn/

船舶海洋与建筑工程学院 海洋工程国家重点实验室

2020年

Introduction

In this section,

- we develop the finite element models of one-dimensional timedependent problems and
- describe time approximation schemes to convert ordinary differential equations in time to algebraic equations.

We consider finite element models of the time-dependent version of the differential equations studied previously. These include
The second-order (in space) parabolic equations (i.e, first time derivative)

• The second-order hyperbolice quations (i.e, second time derivative)

• The fourth-order hyperbolic equations arising in connection with the bending of beams

Finite element models of time-dependent problems can be developed in two alternative ways:

(a) coupled formulation in which the time t is treated as an additional coordinate along with the spatial coordinate x
 (b) decoupled formulation where time and spatial variations are assumed to be separable

Thus, the approximation in the two formulations takes the form $u(x,t) \approx u_h^e(x,t) = \sum_{\substack{j=1 \ n}}^n \hat{u}_j^e \hat{\psi}_j^e(x,t)$ (coupled formulation) $u(x,t) \approx u_h^e(x,t) = \sum_{\substack{j=1 \ n}}^n u_j^e(t) \psi_j^e(x)$ (coupled formulation)

- $\hat{\psi}_{j}^{e}(x,t)$ are time-space (two-dimensional) interpolation functions
- \hat{u}_{j}^{e} are the nodal values that are independent of x and t,
- $\psi_j^e(x)$) are the usual one-dimensional interpolation functions in spatial coordinate x only
- $u_j^e(t)$ are functions of time t only

Space-time coupled finite element formulations are not common, and they have not been adequately studied. In this section, we consider the space-time decoupled formulation only

The space-time decoupled finite element formulation of timedependent problems involves 2 steps :

1. Spatial approximation,

- The solution *u* of the equation under consideration is approximate by decoupled form, and the spatial finite element model of the equation is developed using the procedures of static or steady-state problems while carrying all time-dependent terms in the formulation.
- This step results in a set of ordinary differential equations (i.e, a semidiscrete system of equations) in time for the nodal variables $u_j^e(t)$ of the element. Decoupled Eq. represents the spatial approximation of u for any time t
- When the solution is separable into functions of time only and space only, u(x,t) = T(t)X(x), the approximation is clearly justified

- Even when the solution is not separable, decoupled Eq. can represent a good approximation of the actual solution provided a sufficiently small time step is used
- 2. Temporal approximation
 - The system of ordinary differential equations are further approximated in time, often using finite difference formulae for the time derivatives
 - This step allows conversion of the system of ordinary differential equations into a set of algebraic equations among u at time $t_{s+1} = (s+1)\Delta t$, where Δt is the time increment and s is a nonnegative integer

COMPUTATIONAL MARINE HYDRODYNAMICS LAB

All time approximation schemes seek to find u_j at time $t_s + 1$ using the values of u_j from previous times :

compute $\{u\}_{s+1}$ using $\{u\}_s, \{u\}_{s-1}, \dots$

Thus, at the end of the two-stage approximation, we have a continuous spatial solution at discrete intervals of time

$$u(x,t_s) \approx u_h^e(x,t_s) = \sum_{i=1}^n u_j^e(t_s)\psi_j^e(t_s) \ (s=0,1,...)$$

Note: the approximate solution has the same form as that in the separation-of variables technique used to solve boundary value and initial value problems

$$u(x, t_s) \approx u_h^e(x, t_s) = \sum_{j=1}^n u_j^e(t_s) \psi_j^e(t_s) \ (s = 0, 1, ...)$$

Note: By taking nodal values to be functions of time, we see that the spatial points in an element take on different values for different times

COMPUTATIONAL MARINE HYDRODYNAMICS LAB

CIVIAL SHANGHAI JIAO TONG UNIVERSITY

- We study the details of the two steps by considering a model differential equation that contains both
- second-and fourth-order spatial derivatives
- first-and second-order time derivatives

$$-\frac{\partial}{\partial x}\left(a\frac{\partial u}{\partial x}\right) + \frac{\partial^2}{\partial x^2}\left(b\frac{\partial^2 u}{\partial x^2}\right) + c_0u + c_1\frac{\partial u}{\partial t} + c_2\frac{\partial^2 u}{\partial t^2} = f(x,t)$$

The above equation is subject to appropriate boundary and initial conditions. The boundary conditions are of the form

specify
$$u(x,t)$$
 or $-a\frac{\partial u}{\partial x} + \frac{\partial}{\partial x}\left(b\frac{\partial^2 u}{\partial x^2}\right)$
specify $\frac{\partial u}{\partial x}$ or $b\frac{\partial^2 u}{\partial x^2}$

at x = 0, L, and the initial conditions involve specifying

$$c_2 u(x,0)$$
 and $c_2 \dot{u}(x,0) + c_1 u(x,0)$ $\dot{u} \equiv \partial u / \partial t$

$$-\frac{\partial}{\partial x}\left(a\frac{\partial u}{\partial x}\right) + \frac{\partial^2}{\partial x^2}\left(b\frac{\partial^2 u}{\partial x^2}\right) + c_0u + c_1\frac{\partial u}{\partial t} + c_2\frac{\partial^2 u}{\partial t^2} = f(x,t)$$

- Above equation describes following physical roblems
- a. Heat transfer and fluid flow:

 $c_2 = 0 and b = 0$

b. Transverse motion of a cable:

 $a = T, c_0 = 0, b = 0, c_1 = \rho, c_2 = 0$

- c. The longitudinal motion of a rod: a = EA, b = 0; if damping is not considered, $c_1 = 0, c_2 = \rho A$
- d. The transverse motion of an Euler-Bernoulli beam:

 $a = 0, b = EI, c_0 = k, c_1 = 0, c_2 = \rho A$

Semidiscrete Finite Element Models

The semidiscrete formulation involves approximation of the spatial variation of the dependent variable. The formulation follows essentially the same steps as described in previous

- The first step involves the construction of the weak form of the equation over a typical element
- In the second step, we develop the finite element model by seeking approximation of the decoupled form

$$-\frac{\partial}{\partial x}\left(a\frac{\partial u}{\partial x}\right) + \frac{\partial^2}{\partial x^2}\left(b\frac{\partial^2 u}{\partial x^2}\right) + c_0u + c_1\frac{\partial u}{\partial t} + c_2\frac{\partial^2 u}{\partial t^2} = f(x,t)$$

$$\begin{split} 0 &= \int_{x_a}^{x_b} w \left[-\frac{\partial}{\partial x} \left(a \frac{\partial u}{\partial x} \right) + \frac{\partial^2}{\partial x^2} \left(b \frac{\partial^2 u}{\partial x^2} \right) + c_0 u + c_1 \frac{\partial u}{\partial t} + c_2 \frac{\partial^2 u}{\partial t^2} - f \right] dx \\ &= \int_{x_a}^{x_b} \left[\frac{\partial w}{\partial x} a \frac{\partial u}{\partial x} + \frac{\partial^2 w}{\partial x^2} b \frac{\partial^2 u}{\partial x^2} + c_0 w u + c_1 w \frac{\partial u}{\partial t} + c_2 w \frac{\partial^2 u}{\partial t^2} - w f \right] dx \\ &\quad + \left[w \left[\left(-a \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial x} \left(b \frac{\partial^2 u}{\partial x^2} \right) \right] + \frac{\partial w}{\partial x} \left(-b \frac{\partial^2 u}{\partial x^2} \right) \right]_{x_a}^{x_b} \\ &= \int_{x_a}^{x_b} \left[a \frac{\partial w}{\partial x} \frac{\partial u}{\partial x} + b \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 u}{\partial x^2} + c_0 w u + c_1 w \frac{\partial u}{\partial t} + c_2 w \frac{\partial^2 u}{\partial t^2} - w f \right] dx \\ &\quad - \hat{Q}_1 w(x_a) - \hat{Q}_3 w(x_b) - \hat{Q}_2 \left(-\frac{\partial w}{\partial x} \right) \right|_{x_a} - \hat{Q}_4 \left(-\frac{\partial w}{\partial x} \right) \right|_{x_b} \end{split}$$

CMHL COMPUTATIONAL MARINE HYDRODYNAMICS LAB SHANGHAI JIAO TONG UNIVERSITY

$$\hat{Q}_{1} = \left[-a \frac{\partial u}{\partial x} + \frac{\partial}{\partial x} \left(b \frac{\partial^{2} u}{\partial x^{2}} \right) \right]_{x_{a}}, \hat{Q}_{2} = \left[b \frac{\partial^{2} u}{\partial x^{2}} \right]_{x_{a}}$$
$$\hat{Q}_{3} = -\left[-a \frac{\partial u}{\partial x} + \frac{\partial}{\partial x} \left(b \frac{\partial^{2} u}{\partial x^{2}} \right) \right]_{x_{b}}, \hat{Q}_{4} = -\left[b \frac{\partial^{2} u}{\partial x^{2}} \right]_{x_{b}}$$

Next, we assume that u is interpolated by an expression of the decoupled form:

$$u(x,t) \approx u_h^e(x,t) = \sum_{j=1}^n u_j^e(t)\psi_j^e(x)$$
 (decoupled formulation)

This equation implies that, at any arbitrarily fixed time t > 0, the function u can be approximated by a linear combination of the ψ_j^e and $u_j^e(t)$, with $u_j^e(t)$ being the value of u at time t at the jth node of the element Omegae. In other words, the time and spatial variations of u are separable.

OMPUTATIONAL MARINE HYDRODYNAMICS LAB

- This assumption is not valid, in general, because it may not be possible to write the solution u(x,t) as the product of a function of time only and a function of space only
- However, with sufficiently small time steps, it is possible to obtain accurate solutions to even those problems for which the solution is not separable in time and space
- The finite element solution that we obtain at the end of the analysis is continuous in space but not in time
- We only obtain the finite element solution in the form

$$u(x,t_s) = \sum_{j=1}^n u_j^e(t_s)\psi_j^e(t_s) = \sum_{j=1}^n (u_j^s)^e \psi_j^e(x) \quad (s = 0,1,...)$$

TATIONAL MARINE HYDRODYNAMICS LAB

SHANGHAI JIAO TONG UNIVERSITY

Where $(u_j^s)^e$ is the value of u(x, t) at time $t = t_s$ and node j of the element Omegae

Substituting $w = \psi_j^e(x)$ (to obtain the ith equation of the system) and substitute decoupled approximation into weak form, we obtain

$$u(x,t) \approx u_h^e(x,t) = \sum_{j=1}^n u_j^e(t)\psi_j^e(x)$$
 (decoupled formulation)

$$0 = \int_{x_a}^{x_b} \left[a \frac{\partial w}{\partial x} \frac{\partial u}{\partial x} + b \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 u}{\partial x^2} + c_0 w u + c_1 w \frac{\partial u}{\partial t} + c_2 w \frac{\partial^2 u}{\partial t^2} - w f \right] dx$$
$$-\hat{Q}_1 w(x_a) - \hat{Q}_3 w(x_b) - \hat{Q}_2 \left(-\frac{\partial w}{\partial x} \right) \bigg|_{x_a} - \hat{Q}_4 \left(-\frac{\partial w}{\partial x} \right) \bigg|_{x_b}$$

COMPUTATIONAL MARINE HYDRODYNAMICS LAB

CIVIAL SHANGHAI JIAO TONG UNIVERSITY

$$0 = \int_{x_a}^{x_b} \left[a \frac{d\psi_i}{dx} \left(\sum_{j=1}^n u_j \frac{d\psi_j}{dx} \right) + b \frac{d^2\psi_i}{dx^2} \left(\sum_{j=1}^n u_j \frac{d^2\psi_j}{dx^2} \right) + c_0\psi_i \left(\sum_{j=1}^n u_j\psi_j \right) \right. \\ \left. + c_1\psi_i \left(\sum_{j=1}^n \frac{du_j}{dt}\psi_j \right) + c_2\psi_i \left(\sum_{j=1}^n \frac{d^2u_j}{dt^2}\psi_j \right) - \psi_i f \right] dx \\ \left. - \hat{Q}_1\psi_i(x_a) - \hat{Q}_3\psi_i(x_b) - \hat{Q}_2 \left(-\frac{d\psi_j}{dx} \right) \right|_{x_a} - \hat{Q}_4 \left(-\frac{d\psi_j}{dx} \right) \right|_{x_b} \\ \left. = \sum_{i=1}^n \left[\left(K_{ij}^1 + K_{ij}^2 \right) u_j + M_{ij}^1 \frac{du_j}{dt} + M_{ij}^2 \frac{d^2u_j}{dt^2} \right] - F_i \right]$$

In matrix form, we have

$$[K]{u} + [M^1]{\dot{u}} + [M^2]{\ddot{u}} = \{F\}$$

CMHL COMPUTATIONAL MARINE HYDRODYNAMICS LAB SHANGHAI JIAO TONG UNIVERSITY

$$[K]{u} + [M^1]{\dot{u}} + [M^2]{\ddot{u}} = {F}$$
 (a)

where

$$\begin{split} & [K] = [K^{1}] + [K^{2}] + [M^{0}] \\ & M_{ij}^{0} = \int_{x_{a}}^{x_{b}} c_{0} \psi_{i} \psi_{j} dx, \\ & M_{ij}^{2} = \int_{x_{a}}^{x_{b}} c_{2} \psi_{i} \psi_{j} dx, \\ & K_{ij}^{1} = \int_{x_{a}}^{x_{b}} c_{2} \psi_{i} \psi_{j} dx, \\ & K_{ij}^{2} = \int_{x_{a}}^{x_{b}} b \frac{d^{2} \psi_{i}}{dx^{2}} \frac{d^{2} \psi_{j}}{dx^{2}} dx, \\ & F_{ij} = \int_{x_{a}}^{x_{b}} b \frac{d^{2} \psi_{i}}{dx^{2}} \frac{d^{2} \psi_{j}}{dx^{2}} dx, \\ & F_{i} = \int_{x_{a}}^{x_{b}} \psi_{i} f \, dx + \hat{Q}_{i} \end{split}$$

Equation (a) is a hyperbolic equation, and it contains the parabolic equation as a special case (set [M] = [0]). The time approximation of (a) for these two cases will be considered separately

COMPUTATIONAL MARINE HYDRODYNAMICS LAB

CIVIML SHANGHAI JIAO TONG UNIVERSITY

Parabolic Equations-Time Approximation

- The time approximation is discussed with the help of a single first-order differential equation
- Suppose that we wish to determine u(t) for t > 0 such that u(t) satisfies

$$a \frac{du}{dt} + bu = f(t), \qquad 0 < t < T \text{ and } u(0) = u_0$$

where $a \neq 0$, *b*, and u_0 are constants, and *f* is a function of time *t*.

 The exact solution of the problem consists of two parts: the homogeneous and particular solutions. The homogeneous solution is

$$u^h(t) = Ae^{-kt}, k = \frac{b}{a}$$

The particular solution is

$$u^{p}(t) = \frac{1}{a}e^{-kt}\left(\int_{0}^{t}e^{k\tau}f(\tau)\right)d\tau$$

The complete solution is given by

$$u(t) = e^{-kt} \left(A + \frac{1}{a} \int_0^t e^{k\tau} f(\tau) \right) d\tau$$

- In the finite difference solution of parabolic Eq., we replace the derivatives with their finite difference approximation
- The most commonly used scheme is the a family of approximation in which a weighted average of the time derivatives at two consecutive time steps is approximated by linear interpolation of the values of the variable at the two steps (as in Fig. next)

$$(1-\alpha)\dot{u}_s + \alpha\dot{u}_{s+1} = \frac{u_{s+1} - u_s}{\Delta t_{s+1}} \text{ for } 0 \le \alpha \le 1$$

us, denotes the value of u(t) at time $\Delta t_s = t_s - t_{s-1}$ is the sth time step

 $t = t_s = \sum_{i=1}^{s} \Delta t_i$

PUTATIONAL MARINE HYDRODYNAMICS LAB

COMPUTATIONAL MARINE HYDRODYNAMICS LAB

LIVIAL SHANGHAI JIAO TONG UNIVERSITY

If the total time [0, T] is divided into equal time steps, then $t_s = s\Delta t$, and

$$(1 - \alpha)\dot{u}_s + \alpha\dot{u}_{s+1} = \frac{u_{s+1} - u_s}{\Delta t_{s+1}} \text{ for } 0 \le \alpha \le 1$$
 (a)

$$u_{s+1} = u_s + \Delta t \dot{u}_{s+\alpha}$$
$$\dot{u}_{s+\alpha} = (1-\alpha)\dot{u}_s + \alpha \dot{u}_{s+1} \text{ for } 0 \le \alpha \le 1$$
 (b)

TATIONAL MARINE HYDRODYNAMICS LAB

SHANGHAI JIAO TONG UNIVERSITY

When $\alpha = 0$, Eq.(a) gives

$$\dot{u}_s = \frac{u_{s+1} - u_s}{\Delta t_{s+1}}$$

This is the slope of the function u(t) at time $t = t_s$ based on the values of the function at time ts and $t_s + 1$

 Since the value of the function from a step in front is used, it is termed a forward difference approximation

$$(1 - \alpha)\dot{u}_{s} + \alpha\dot{u}_{s+1} = \frac{u_{s+1} - u_{s}}{\Delta t_{s+1}} \text{ for } 0 \le \alpha \le 1$$
 (a)

When $\alpha = 1$, we obtain

$$\dot{u}_{s+1} = \frac{u_{s+1} - u_s}{\Delta t_{s+1}} \longrightarrow \dot{u}_s = \frac{u_s - u_{s-1}}{\Delta t_s}$$

which is termed, for obvious reason, the **backward difference** approximation

Recall the parabolic Eq.:

$$a \frac{du}{dt} + bu = f(t), 0 < t < T \text{ and } u(0) = u_0$$

Note that it is valid for all times 0 < t < T. In particular, it is valid at times $t = t_s$, and $t = t_s + 1$. Hence,

$$\dot{u}_s = \frac{1}{a}(f_s - bu_s), \dot{u}_{s+1} = \frac{1}{a}(f_{s+1} - bu_{s+1})$$

Substituting the above expressions into finite difference approximation (a):

$$(1 - \alpha)\dot{u}_s + \alpha\dot{u}_{s+1} = \frac{u_{s+1} - u_s}{\Delta t_{s+1}} \text{ for } 0 \le \alpha \le 1$$
 (a)

COMPLITATIONAL MARINE HYDRODYNAMICS LAB

SHANGHAI JIAO TONG UNIVERSITY

$$(1 - \alpha)(f_s - bu_s) + \alpha(f_{s+1} - bu_{s+1}) = \alpha \frac{u_{s+1} - u_s}{\Delta t_{s+1}}$$

Solving for $u_s + 1$, we obtain

 $[a + \alpha \Delta t_{s+1}b]u_{s+1} = [a - (1 - \alpha)\Delta t_{s+1}b]u_s + \Delta t_{s+1}[\alpha f_{s+1} + (1 - \alpha)f_s]$

$$u_{s+1} = \frac{a - (1 - \alpha)\Delta t_{s+1}b}{a + \alpha\Delta t_{s+1}b}u_s + \Delta t_{s+1}\frac{[\alpha f_{s+1} + (1 - \alpha)f_s]}{a + \alpha\Delta t_{s+1}b}$$

Thus, above Eq. can be used repeatedly to march in time and obtain the solution at times $t = t_s + 1$, $t_s + 2$, ..., t_N , Ntime is the number of time steps required to reach the final T

At the very beginning, i. e s = 0, the solution u is calculated using the initial value u_0 :

$$u_1 = \frac{a - (1 - \alpha)\Delta t_1 b}{a + \alpha \Delta t_1 b} u_0 + \Delta t_1 \frac{[\alpha f_1 + (1 - \alpha)f_0]}{a + \alpha \Delta t_1 b}$$

TATIONAL MARINE HYDRODYNAMICS LAB

We may also develop a time approximation scheme using the finite element method

• To this end, we consider the same parabolic problem

$$a \frac{du}{dt} + bu = f(t), 0 < t < T \text{ and } u(0) = u_0$$

• We wish to determine u_{s+1} in terms of u_s The weighted-integral form of the parabolic over the time interval (t_s, t_{s+1}) is $0 = \int_{0}^{t_{s+1}} u(t) \left(a \frac{du}{dt} + bu - f\right) dt$

$$0 = \int_{t_s}^{s+1} v(t) \left(a \frac{du}{dt} + bu - f \right) dt$$

where u is the weight function. Assuming a solution of the form

$$u(t) \approx \sum_{j=1}^{n} u_j \psi_j(t)$$

where $\psi_j(t)$ are interpolation functions of order (n-1). The Galerkin finite element model is obtained by substituting the above approximation for u and $v = \psi i$. We obtain

$$[A]\{u\} = \{F\}$$

$$A_{ij} = \int_{t_s}^{t_{s+1}} \psi_i(t) \left(a \frac{d\psi_j}{dt} + b\psi_j \right) dt , F_i = \int_{t_s}^{t_{s+1}} \psi_i(t) f(t) dt$$

- Equation is valid with the time interval (t_s, t_{s+1}) , and it represents a relationship be tween the values $u_1, u_2, ..., u_n$, which are the values of u at time $t_s, t_s + \Delta t/(n-1), t_s + 2\Delta t/(n-1), ..., t_{s+1}$, respectively
- This would yield a multistep approximation scheme
- To obtain a single-step approximation scheme, i.e., write $u_s + 1$ in terms of u_s only, we assume linear approximation (i.e. n = 2)

$$u(t) = u_s \psi_1(t) + u_{s+1} \psi_2(t)$$

$$\psi_1(t) = \frac{t_{s+1} - t_s}{\Delta t}$$
 and $\psi_2(t) = \frac{t - t_s}{\Delta t}$

For this choice of approximation, the Matrix form can be written

1

as

$$\begin{pmatrix} a \\ 2 \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} + \frac{b\Delta t}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \end{pmatrix} \begin{pmatrix} u_s \\ u_{s+1} \end{pmatrix} = \frac{\Delta t}{6} \begin{pmatrix} f_s \\ 2f_{s+1} \end{pmatrix}$$

Assuming that u_s is known, we solve for u_{s+1} from the second equation

$$\left(a + \frac{2b\Delta t}{3}\right)u_{s+1} = \left(a - \frac{b\Delta t}{3}\right)u_s + \Delta t\left(\frac{f_s}{3} + \frac{2f_{s+1}}{3}\right)$$

Recall, using Finite difference method, we get

 $[a + \alpha \Delta t_{s+1}b]u_{s+1} = [a - (1 - \alpha)\Delta t_{s+1}b]u_s + \Delta t_{s+1}[\alpha f_{s+1} + (1 - \alpha)f_s]$

TIONAL MARINE HYDRODYNAMICS LAB

SHANGHAI JIAO TONG UNIVERSITY

By comparison,

we find that the Galerkin scheme is a specia case of the a finite difference family of approximation, with $\alpha = 2/3$

Parabolic Equations-Stable and Conditionally Stable Schemes

$$u_{s+1} = \frac{a - (1 - \alpha)\Delta t_{s+1}b}{a + \alpha\Delta t_{s+1}b}u_s + \Delta t_{s+1}\frac{[\alpha f_{s+1} + (1 - \alpha)f_s]}{a + \alpha\Delta t_{s+1}b}$$

can be written in the form:

$$u_{s+1} = A(u_s) + F_{s,s+1}, A = \frac{a - (1 - \alpha)\Delta t_{s+1}b}{a + \alpha\Delta t_{s+1}b}$$
$$F_{s,s+1} = \Delta t_{s+1} \frac{[\alpha f_{s+1} + (1 - \alpha)f_s]}{a + \alpha\Delta t_{s+1}b}$$

The operator A is known as the amplification operator. Since us is an approximate solution, the error $E_s = u_a(t_s) - u_s$ at time t_s (where u_a is the exact solution) will influence the solution at t_{s+1}

TATIONAL MARINE HYDRODYNAMICS LAB

$$u_{s+1} = A(u_s) + F_{s,s+1}, A = \frac{a - (1 - \alpha)\Delta t_{s+1}b}{a + \alpha \Delta t_{s+1}b}$$
$$F_{s,s+1} = \Delta t_{s+1} \frac{[\alpha f_{s+1} + (1 - \alpha)f_s]}{a + \alpha \Delta t_{s+1}b}$$

- The error will grow (i.e, Es will be amplified) as we march in time if the magnitude of the operator is greater than 1, |A| > 1
- When the error grows without bound, the computational scheme becomes unstable (i.e, solution u_{s+1} becomes unbounded with time)
- Therefore, in order for the scheme to be stable, it is necessary that $|A| \le 1$:

$$\left|\frac{a - (1 - \alpha)\Delta t_{s+1}b}{a + \alpha\Delta t_{s+1}b}\right| \le 1$$

TATIONAL MARINE HYDRODYNAMICS LAB

The above equation places a restriction on the magnitude of the time step for certain values of α

- When the error remains bounded for any time step (i.e., condition is trivially satisfied for any value of Δt , the scheme is stable
- If the error remains bounded only when the time step Δt remains below certain value, the scheme is said to be conditionally stable

For different values of α , the time approximation scheme yields a different scheme. The following well-known time-approximation schemes along with their order of accuracy and stability should be noted

 $\alpha = \begin{cases} 0, & \text{The forward difference (or Euler) scheme (conditionally stable); order of accuracy=0(\Delta t) \\ \hline 2, & \text{The Crank-Nicolson scheme (stable);} 0(\Delta t)^2 \\ \hline 2, & \text{The Galerkin method (stable);} 0(\Delta t)^2 \\ \hline 1, & \text{The backward difference scheme (stable);} 0(\Delta t) \end{cases}$

NA26018 Finite Element Analysis of Solids and Fluids

CMHL SJTU COMPUTATIONAL MARINE HYDRODYNAMICS LAB 上海交大船舶与海洋工程计算水动力学研究中心

创新创智・求真求实

Creation of Mind, Highfidelity of Learning

http://dcwan.sjtu.edu.cn