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Time-dependent problems

Introduction
In this section,
® we develop the finite element models of one-dimensional time-
dependent problems and
® describe time approximation schemes to convert ordinary
differential equations in time to algebraic equations.

We consider finite element models of the time-dependent version
of the differential equations studied previously. These include
® The second-order (in space) parabolic equations

(i.e, first time derivative)

® The second-order hyperbolice quations
(i.e, second time derivative)

® The fourth-order hyperbolic equations
arising in connection with the bending of beams
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Time-dependent problems

Finite element models of time-dependent problems can be
developed in two alternative ways:

(a) coupled formulation in which the time ¢t is treated as an
additional coordinate along with the spatial coordinate x
(b) decoupled formulation where time and spatial variations are

assumed to be separable

Thus, the approximation in Ehe two formulations takes the form

u(x,t) = up(x,t) = Z ﬁ]?l/jf (x,t) (coupled formulation)

j=1
n

u(x,t) = up(x,t) = Z ui (£)5 (x) (coupled formulation)
=1
1/3]‘? (x, t)are time-space (two-dim]ensional) interpolation functions
iiare the nodal values that are independent of x and ¢,
Y7 (x)) are the usual one-dimensional interpolation functions in spatial coordinate
x only
® u;(t) are functions of time ¢ only
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Time-dependent problems

Space-time coupled finite element formulations are not common,
and they have not been adequately studied. In this section, we
consider the space-time decoupled formulation only

The space-time decoupled finite element formulation of time-
dependent problems involves 2 steps :

1. Spatial approximation,

® The solution u of the equation under consideration is approximate
by decoupled form, and the spatial finite element model of the
equation is developed using the procedures of static or steady-
state problems while carrying all time-dependent terms in the
formulation.

® This step results in a set of ordinary differential equations (i.e, a
semidiscrete system of equations) in time for the nodal variables
u/ (t) of the element. Decoupled Eq. represents the spatial
approximation of u for any time ¢

® When the solution is separable into functions of time only and
space only, u(x,t) = T(t)X(x), the approximation is clearly justified
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Time-dependent problems

® Even when the solution is not separable, decoupled Eq. can

represent a good approximation of the actual solution provided a
sufficiently small time step is used

2. Temporal approximation

® The system of ordinary differential equations are further
approximated in time, often using finite difference formulae for
the time derivatives

® This step allows conversion of the system of ordinary differential
equations into a set of algebraic equations among u at time t.,; =

(s + 1)At, where At is the time increment and s is a honnegative
integer
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Time-dependent problems

All time approximation schemes seek to find u; at time ¢; + 1 using
the values of u; from previous times :

compute {u}s+1 USing{u}s; {u}s—l;

Thus, at the end of the two-stage approximation, we have a
continuous spatial solution at discrete intervals of time

n

u(,ts) = U () = ) uf(tdPF(Es) (5 = 0,1,..)

j=1
Note: the approximate solution has the same form as that in the
separation-of variables technique used to solve boundary value
and initial value problems
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Time-dependent problems

n

u(,ts) = U Crt) = Y uf(EPFES) (5= 0,1,...)

j=1

Note: By taking nodal values to be functions of time, we see that
the spatial points in an element take on different values for
different times

Uall5)
us(ty)  /
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Time-dependent problems

We study the details of the two steps by considering a model
differential equation that contains both

® second-and fourth-order spatial derivatives
® first-and second-order time derivatives

ou +62 bazu N N 6u+ azu_ (6.0
ax\%ax) Yoz \Pggz) Teoutagt gz =/

The above equation is subject to appropriate boundary and initial
conditions. The boundary conditions are of the form

_ ou 0 ([ 0%°u
specify u(x,t) or —aa+a bﬁ
- Ou 0°u
specify I or bﬁ

at x = 0,L, and the initial conditions involve specifying

c,u(x,0) and cyu(x,0) + cyu(x, 0) U = du/ot
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Time-dependent problems

0 [ ou N 0% bazu N N ou N 0*u (e
ox\%ox) Taxz\Poxz) Teoutag t g =1
Above equation describes following physical roblems

a. Heat transfer and fluid flow:
¢, =0and b =0

b. Transverse motion of a cable:
a=T,ce=0b=0,c;, =p,c;=0

c. The longitudinal motion of a rod:
a = EA,b = 0; if damping is not considered,c; = 0,c, = pA

d. The transverse motion of an Euler-Bernoulli beam:
a=0b=Elcy=kcqy=0,c, =pA
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Time-dependent problems

Semidiscrete Finite Element Models

The semidiscrete formulation involves approximation of the
spatial variation of the dependent variable. The formulation
follows essentially the same steps as described in previous

® The first step involves the construction of the weak form of the
equation over a typical element

® In the second step, we develop the finite element model by
seeking approximation of the decoupled form
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Time-dependent problems

0 ( du\, 9 ( 0%\ ou o -
ax\%ax) Taxz\Poxz )| Tt tag t gz =1

(*b d au 62 d%u du
O=Jx w —a I axz bﬁ +C0u+Cla—+C2 — fldx
(*b 6W au 0°w  0%u ou 0°u
= J P ax 22 b 92 + cowu + clwa + cow—= ez —wf|dx

Xa

350

ow ou 2w d?%u ou d0%u
=[G+ P g ok e g+ - d
ow ~ ow
_Q1W(xa) 3W(xb) — Qz (‘ a) — Q4 <_a)
Xa Xb
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Time-dependent problems

. [ ou o/ o%u\l . 0°u

01 = __a6x+6x<b6x2)_x Q2 = [bﬁ .
A [ Ju 0 [ 0%u\] ’ ~ azua
U= - _a0x+0x(bax2> Q4 = bﬁ

“Xb Xb

Next, we assume that u is interpolated by an expression of the
decoupled form:

n
u(x,t) = up(x,t) = z ui (£); (x) (decoupled formulation)
j=1
This equation implies that, at any arbitrarily fixed time ¢t > 0, the
function u can be approximated by a linear combination of the 7
and u;(t), withu;(t) being the value of u at time ¢ at the jth node

of the element Omegae. In other words, the time and spatial
variations of u are separable.
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Time-dependent problems

® This assumption is not valid, in general, because it may not be
possible to write the solution u(x,t) as the product of a function
of time only and a function of space only

® However, with sufficiently small time steps, it is possible to
obtain accurate solutions to even those problems for which the
solution is not separable in time and space

® The finite element solution that we obtain at the end of the
analysis is continuous in space but not in time

We only obtain the finite element solution in the form

n n

u(x, tg) = Z uje(ts)lp]?(ts) = (ujs)elpf(x) (s=01,..)
j=1 j=1
Where(uf) is the value of u(x,t) at time t = t;and node j of the

element Omegae
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Time-dependent problems

Substituting w = y¢(x) (to obtain the ith equation of the system)
and substitute decoupled approximation into weak form, we
obtain

n

u(x, t) = up(x,t) = Z u; (£)y;5 (x) (decoupled formulation)

=
O—ij awau+bazwazu+ N 6u+ d0%u p
=), |Yaxax TP axz oz T W T AWt WG T W | X
~ ~ . ow ~ ow
—Q1w(xg) — Qzw(xp) — Q3 (_ a) — Q4 <— a)
Xa Xp
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Time-dependent problems

Xp
0= |
Xa

dip; dp;\  d%y d*y; C
Cdx (Z Y dx>+b dx? (Z Y dx )“""’"’(Z”f‘/’f)

j=1 j=1 j=1

n n dz .
ey (Z —y ) + e ( — w,-) —if
- =1

~ ~ ~ dy;
—Q1¥;(xq) — Q3¢;(xp) — O <_ %)

dx

- du d*u
— 1 2 1 2 J
= E [(K + K2 )uj + Mj; —— o )+ M2 dt2] F;
i=1

In matrix form, we have

[K{u} + M@} + [M?]{u} = {F}
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Time-dependent problems

[Kl{u} + [M']{w} + [M?]{u} = {F} (a)

Where KI= K]+ K2+ 0]

M} =Jr co Yipjdx, Mj; —j ¢ Yiidx

Xa Xa

& b dy dy,
2 _ | 1 _ i AY;
M;; = Jxa c; Yijdx, K L Tx dx dx
Xp le/J dzlp
2 _ L J _ A
Kij = . b dx2 dx2 dx F La lplf dx + Qi

Equation (a) is a hyperbolic equation, and it contains the
parabolic equation as a special case (set [M] = [0]). The time
approximation of (a) for these two cases will be considered
separately
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Time-dependent problems
Parabolic Equations-Time Approximation

The time approximation is discussed with the help of a single
first-order differential equation

® Suppose that we wish to determine u(t) for ¢t > 0 such that u(t)
satisfies

du
dt

where a = 0, b,and u, are constants, and f is a function of time t.
® The exact solution of the problem consists of two parts: the

homogeneous and particular solutions. The homogeneous
solution is

a— + bu = f(t), 0<t<T andu(0) = u,

b
ult(t) = Ae ¥t k = -

The particular solution is
1 t
uP(t) = —e* (j e’“f(r)) dr
a 0
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Time-dependent problems

The complete solution is given by
1 t
u(t) = ekt (A + aj e’“f(r)) dt
0

® In the finite difference solution of parabolic Eq., we replace the
derivatives with their finite difference approximation

® The most commonly used scheme is the a family of
approximation in which a weighted average of the time
derivatives at two consecutive time steps is approximated by
linear interpolation of the values of the variable at the two
steps (as in Fig. next)

u —Uu
(1—a)i, + attgy, =——for0<a <1
Atsyq }
us, denotes the value of u(t) at time t=t, = z At;
=1

At; = ts — ts—1 is the sth time step
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Time-dependent problems

(7% Uiy — U, :
W= — Y, forward difference
Al
— U o
: $=1 backward difference
Al
1u(t) A
{ l.\'— | “.\'+ i
k < = o |
=) e= 1) s—1 5 s+1
o==1 | |

At

1}
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Time-dependent problems

If the total time [0,T] is divided into equal time steps, then ¢, =

sAt, and
Usy1 — Ug

for0<a<1 (a)

1—a)u. + au =
( ) S Ss+1 Ats+1

Us+1 = Us T AtUsiq
Usrg = (1 —a)ug + atig,; for0<a <1 (b)

When « =0, Eq.(a) gives

_ Usy1 — Us
¢ =
Ats+1

This is the slope of the function u(t) at time t = t, based on the

values of the function at time ts and¢, + 1

® Since the value of the function from a step in front is used, it is
termed a forward difference approximation
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Time-dependent problems

Usy1 — Ug

(1—-a)us + atigyq = for0<a<1 (a)
Ats+1
When a = 1, we obtain
i _ Ugyr —Ug . = Us — Us—
s+1 Ats+1 S Ats

which is termed, for obvious reason, the backward difference
approximation
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Time-dependent problems

Recall the parabolic Eq.:

du
aa+bu=f(t),0 <t<Tand u(0) = u,

Note that it is valid for all times 0 < t < T. In particular, it is valid
attimest=t,and t =t, + 1. Hence,

. 1 . 1
Us = a (fs - bus);us+1 = a (fs+1 - bus+1)

Substituting the above expressions into finite difference
approximation (a):

Usy1 — Ug

(1 -, + atig, = for0<a<1 (a)

Ats+1

u —Uu
(1 — a)(f; — bug) + a(fyyq — bugy,) = a——""
Atsyq

Solving for u, + 1,we obtain

c M H COMPUTATIONAL MARINE HYDRODYNAMICS LAB



Time-dependent problems

la + adtgiblugys = [a — (1 — a)Atgy1b] us + Atgyqlafsir + (1 — a)fs]

a—(1—a)ldtsqb lafsi1+ (1 —a)fs]
Us + Ats+1
a+ adtg, 1 b a+ adts, b

Usy1 =

Thus, above Eq. can be used repeatedly to march in time and
obtain the solution attimest=t.+1, t,+2, .., ty, Ntime is the
number of time steps required to reach the final T

At the very beginning, i. e s = 0, the solution u is calculated using
the initial value u,:

a—(1—a)dtb lafi + (1 — a)fol
= Uy + tl
a+ adt,b a+ adt,b

uq
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Time-dependent problems

We may also develop a time approximation scheme using the
finite element method

® To this end, we consider the same parabolic problem
du

dt

® We wish to determine u.,, in terms of u,
The weighted-integral form of the parabolic over the time interval

(ts: ts+1) 15 ts+1 du
O=j v(t)(a—+bu—f)dt
. dt

S

a—+bu=f(t),0<t<T and u(0) = u,

where u Is the weight function. Assuming a solution of the form

u(®) ~ ) ujipy(6)
j=1
where 1);(t) are interpolation functions of order (n —1). The

Galerkin finite element model is obtained by substituting the
above approximation for u and v = yi. We obtain

. . . . MPUTATIONAL MARINE HYDRODYNAMI
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Time-dependent problems

[Al{u} = {F}

ts+1 ts+1

_ dy; _
Ajj = Pi(t) a—=+ by; |dt , F; = Yi(Of (®)dt

ts ts
® Equation is valid with the time interval (¢, t..,), and it
represents a relationship be tween the values u,u,, ..., u,,, which
are the values of u at timet,, t. + At/(n — 1),t, + 2At/(n —

1), ..., t.4q1, Fespectively
This would yvield a multistep approximation scheme

To obtain a single-step approximation scheme, 1.e., write u, + 1 In
terms of u, only, we assume linear approximation (i.e. n = 2)

u(t) = uslljl (t) + Ust1P (t)
Y1 (1) = S+1At and P, (t) =

For this choice of approximation, the Matrix form can be written
as

— ts
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Time-dependent problems

G 1550 et =51h)

Assuming that u. is known, we solve for u.,.; from the second

equation
2bAt bAt fs  2fs41
(a+—3 >u5+1=<a—T>uS+At(3‘9 ;+>

Recall, using Finite difference method, we get
la + adtsi1blugyy = [a — (1 — a)Atg b ug + Atgiqlafsis + (1 — a)fs]

By comparison,
we find that the Galerkin scheme is a specia case of the a finite
difference family of approximation, with a = 2/3
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Time-dependent problems

Parabolic Equations-
Stable and Conditionally Stable Schemes

a—(1—a)ltsqb lafs+1+ (1 —a)fs]
Us + Ats+1
a+ adtg, 1 b a+ aldts, b

Usy1 =

can be written in the form:
a—(1—a)dtg b
a+ aldts b

Usyq = A(ug) + Fos1, A=

lafss1 + (1 —a)fil

a+ aldts b

Fs,s+1 = Atgyq

The operator 4 is known as the amplification operator. Since us is
an approximate solution, the error E; = u,(t,) — u;at time t;, (where
u, Is the exact solution) will influence the solution at ¢,

c M H COMPUTATIONAL MARINE HYDRODYNAMICS LAB
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Time-dependent problems

a—(1—a)dte, b
a+ aldts b
[afsi1 + (1 —a)fs]

a+ aldtg, 1 b

Usyq = A(ug) + Foo1, A=

Fs,s+1 = Atgyq

® The error will grow (i.e, Es will be amplified) as we march in time if
the magnitude of the operator is greater than 1, |4| > 1

® When the error grows without bound, the computational scheme
becomes unstable (i.e, solution u..; becomes unbounded with time)

® Therefore, in order for the scheme to be stable, it is necessary that
A < 1:
a—(1—a)dtg b
a+ adts, 1b
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Time-dependent problems

The above equation places a restriction on the magnitude of the
time step for certain values of «
® When the error remains bounded for any time step (i.e.,

condition is trivially satisfied for any value of At¢, the scheme is
stable

® If the error remains bounded only when the time step

At remains below certain value, the scheme is said to be
conditionally stable

For different values of «, the time approximation scheme yields a
different scheme. The following well-known time-approximation schemes
along with their order of accuracy and stability should be noted

(0, The forward difference (or Euler) scheme (conditionally
1 stable); order of accuracy=0(At)

2’ The Crank-Nicolson scheme (stable);0(At)?
2
3 The Galerkin method (stable); 0 (At)?

L1, The backward difference scheme (stable);0(At)

CM COMPUTATIONAL MARINE HYDRODYNAMICS LAB



CM H L SJTU COMPUTATIONAL MARINE HYDRODYNAMICS LAB
LBz KRS B LEITEKINDEHFK PO

ﬁU%ﬁﬁUE‘-*E*%‘E

Creation of Mind, Highfidelity of Learning

http://dcwan.sjtu.edu.cn



