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Eigenvalue problems

Introduction

An eigenvalue problem is defined to be one in which we seek the
values of the parameter A1 such that the equation

A(u) = AB(u)

Is satisfied for nontrivial values of u. Here 4 and B denote either
matrix operators or differential operators, and values of n for
which Eq. is satisfied are called eigenvalues. For each value of 1
there is a vector u, called an eigenvector or eigenfunction

d*u d?

e.g. —_——_—= ] —_— e — —
g T2 Au(x), with A dxz'B 1

which arises in connection with natural axial vibrations of a bar or the
transverse vibration of a cable, constitutes an eigenvalue problem. Here
A denotes the square of the frequency of vibration, w
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Eigenvalue problems

In general, the determination of the eigenvalues is of engineering
as well as mathematical importance

® In structural problems, the eigenvalues denote either natural
frequencies or buckling loads

® In fluid mechanics and heat transfer, eigenvalue problems arise
in connection with the determination of the homogeneous
parts of the transient solution

® Eigenvalues often denote amplitudes of Fourier components
making up the solution

® Eigenvalues are also useful in determining the stability
characteristics of temporal schemes
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Eigenvalue problems

Formulation of Eigenvalue Problems

Parabolic Equation
Consider the partial differential equation

dJu 0 du
pCAE — a <kAE> = Q(X, t)
which arises in connection with transient heat transfer in one-
dimensional systems (e.g a plane wall or a fin). u denotes the
temperature, k the thermal conductivity, p the density, A the
cross-sectional area, c the specific heat, ¢ the heat generation per
unit length

® Equations involving the first-order time derivative are called
parabolic equations
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Eigenvalue problems

The homogenous solution (i.e, the solution when g = 0) is often
sought in the form of a product of a function of x and a function
of t (i. e, through the separation-of-variables technique)

ul(x,t) = U)T ()
Substitution of this assumed form of solution into the
homogeneous form gives

ou 6( ou

A ——(ka=) =
PeASE " ax\f 6t> 1t t)

Separating variables of t and x (assuming that pc4 and kA are
functions of x only), we arrive at

1dT 1 1d kAdU
Tdt pcAUdx dx

Note that the left-hand side of this equation is a function of ¢t only
while the right-hand side is a function of x only
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Eigenvalue problems

For two functions of two independent variables to be equal for all
values of the independent variables, both functions must be equal
to the same constant, say -A (A>0):

1dT 11 d A du _

Tdt pcAUdx aot)
dT
— = —AT (p-1)
dt

L (ka2 = 2pcav = o

dx ot peas = (p-2)

The negative sign of the constant 1 is based on the physical
requirement that the solution U(x) be harmonic in x while T(t)
decay exponentially with increasing t

The solution of (p-1) is

T(t) = Ke M
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Eigenvalue problems

T(t) = Ke M
where k is a constant of integration

® The values of 1 are determined by solving (p-2), which also gives U(x)

® With T(t) and U(x) known, we have the complete homogeneous
solution

® The problem of solving (p-2) for 1 and U(x) is termed an eigenvalue
problem, and 1 is called the eigenvalue and U(x) the eigenfunction

When K, A4, p, and c are constants, the solution of (p-2) is

c
U(x) = Csinax + D cos ax,a? = %/1 (p-3)

where C and D are constants of integration. Boundary conditions
of the problem are used to find algebraic relations among ¢ and D
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Eigenvalue problems

To fix the ideas, consider Eq. (p-2) subject to the boundary
conditions: (e. g, a fin with specified temperature at x = 0 and
insulated at x = L)

Using the above boundary conditions in (p-2),we obtain
0=C-04+D-1,0=a(Ccosal — D sinal)

( [cos al  sin aL ){Ig} B {8} (p-4)

For nontrivial solution (i. e, not both C and D are equal to zero) ,
we set the determinant of the coefficient matrix in (p-4) to zero
and obtain (since « cannot be zero)
(2n—Dm

2

cosal =0 — a,L =
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Eigenvalue problems

Hence, the homogeneous solution becomes

= k 2n— 1)
ul(x,t) = ZCne‘Ant sina,x, A, = a? <E>,an = ( 57 )
n=

The constants C,are determined using the initial condition of the
problem, u(x,0) = uy(x)

ul(x,0) = z C,, sin a,x = uy(x)
n=1

Multiplying both sides with sin «,,,x, integrating over the interval
(0,L), and making use of the orthogonality condition

L 0,ifm=#*n 2 L
josinanxsinamxdx= g,ifmzn anzfouo(x)sinanxdx

The complete solution of the Parabolic equation is given by the
sum of the homogeneous solution and the particular solution

ulx, t) = ul(x, t) + uP(x,t)
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Eigenvalue problems

Hyperbolic Equation
The axial motion of a bar, for example, is described by the

equation

Aazu 0 ou
PE3t2 ™ ax

EAa) = f(X, t)

where u denotes the axial displacement, E the modulus of

elasticity, A the cross-sectional area, p the density, and f the axial

force per unit length

® The solution consists of two parts: homogeneous solution u” (
i.e, when f = 0) and particular solution up. The homogeneous
part is determined by the separation-of-variables technique, as
we discussed for the parabolic equation

The homogenous solution is also assumed to be of the form:
ul(x,t) = UQ)T ()
Substitution into the homogeneous form of hyperbolic eq., gives
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Eigenvalue problems

JOPT_d (L AU\
PRaee " ax\"Pax ) T

Assuming that p4A and EA are functions of x only, we arrive at
1d?T 11d dU
= kA = —q?

T dt2 ~ pAUdx dx
2
or d_T + a’T =0 (h-1)
dt?
d dU
— | FA— | — 2 AU = h'2
dx< dx) a‘pAU =0 ( )

The solution of (h-1) is
T(t) = Ke '@ = K, cos at + K, sin at
The solution of (h-2) is

U(x) = Csinax + D cosax,a’ = %az

the constants ¢ and D are determined using the boundary conditions of the

problem
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Eigenvalue problems

Once again, we are required to solve an eigenvalue problem ( the
steps are analogous to those described for a parabolic equation)

Alternatively,

Eigenvalue problems associated with parabolic equations are
obtained from corresponding equations of motion by assuming
solution of the form:

ulx,t) =Ux)e % A=«

Eigenvalue problems associated with hyperbolic equations are
obtained by assuming solution of the form:
u(x,t) = U(x)e Wt 1 = w?

A denotes the eigenvalue

Also (p-2), (h-2) will be derived
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Eigenvalue problems

Finite Element Formulation

Comparison of parabolic and hyperbolic eqs. with the previous
model equation reveals that the equations governing eigenvalue
problems are special cases of the model equations studied

Parabolic eq. Hyperbolic eq.
dT d*T
— = — -1 i 2T — (h-1)
= AT (p-1) Tz ta’T=0
d kA — iad — ApcAU =0 (p-2) d EA av 20AU =0 (h-2)
T\ Cax) TP A g B TPV S

Second order differential eq. in Class-3

¢ (o2 4 =0 for 0 <x <L
o\ cu—f or o <x
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Eigenvalue problems

Here we will summarize the steps in the finite element
formulation of eigenvalue problems for the sake of completeness

® We will consider eigenvalue problems described by
1. A single equation in a single unknown
(e. g, heat transfer, bar, and Euler-Bernoulli beam problems)
2. A pair of equations in two variables
(e.g, Timoshenko beam theory)
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Eigenvalue problems

Heat Transfer and Bar-Like Problems
Consider the problem of solving the equation

d dU
- [a(x)a + c(x)U(x) = Aco(x)U(x)

for A and U(x). Here q, ¢, and ¢, are known quantities that depend
on the physical problem, 1 is eigenvalue, and U is eigenfunction.
Special cases of above Eq. are given below

Heat transfer: a = kA,c = Pf,cy = pcA
Bars: a =EA,c =0,cy = pA

Over typical element (., we seek a finite element approximation
of U in the form

n

US GO = ) u ()

J=1
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Eigenvalue problems

The weak form of governing equation is

b ([ dwdU
0= J (ad—‘::a + cwU(x) — ACOWU) dx — Qiw(x,) — Qiw(xy)
where w is the weight function, and ¢¢ and Q¢ are the secondary
variables at node 1 and node n, respectively

] [ du
“dx  On = Cdx

Xa Xb
Substitution of the finite element approximation into the weak
form gives the finite element model of the eigenvalue equation
dy;
+ cQOYi Y5

[Ke{u®} — A[Me{u®} = {Q°}
K;; =L a(x) o dx, M{; = L bco(x)lpft,bfdx

lljl
Above equation contains the finite element models of the
eigenvalue equations (p-2) and (h-2) as special cases

Q1
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Eigenvalue problems

Example

Consider a plane wall, initially at a uniform temperature 7,, which
has both surfaces suddenly exposed to a fluid at temperature 7.
The governing differential equation is

L0 T
ox2  P0%¢
and the initial condition is
T(x, 0) — TO

where k is the thermal conductivity, p the density, and ¢, the
specitic heat at constant pressure, Equation is also known as the
difusion equation with diffusion coefficient a = k/pc,

® We consider two sets of boundary conditions, each being
representative of a different scenario for x = L. It amounts to
solving for two different sets of boundary conditions
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Eigenvalue problems

‘ BC Set 1: If the heat transfer coefficient at the surfaces ot the
wall is assumed to be infinite the boundary conditions can be
expressed as

T(0,t) =Ty, T(L,t) =T, for t >0

BC Set 2: If we assume that the wall at x = L is subjected to
ambient temperature, we have

oT
T(O, t) = T, k—x ~+ ,B(T — Too)]

=0
0 x=L

Equation can be normalized to make the boundary conditions
homogeneous. Let

The differential equation, initial condition, and boundary
conditions become
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Eigenvalue problems

azu_kau__
dx2  dt
u(0,t) =0,u(1,t) =0,u(x,0) =1 BC set 1
du BL
u(0,t) =0, a+Hu =0,H=? BC set 2
x=1

where the bars over x and u are omitted in the interest of brevity

By separation-of variables technique (or substitute u = Ue™*
leads to the solution of the eigenvalue problem:
d2

U
———— A =0,U(0)=0,U(1) =0 BC set 1
dx?

2U dUu
————AU=0,U(0)=0,{ —+ HU =0 BCset2
dx? dx

x=1
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Eigenvalue problems

d*U AU =0
dx? B
Recall in Heat Transfer and Bar-Like Problems, we solve
d
7 a(x)— + c(x)U(x) = Acy(x)U(x)

This differential equation is a special case witha =1,c =0, and ¢, =
1. For a linearelement, the element equations have the explicit

T L - -

For a quadratic element, we have

L[ e _g|-ale
3h.| . . 30

1 -8 7

4 2 —17\ (U Q7
16 2 u; ¢ =405
1 2 4 ug Q¢
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Eigenvalue problems

Solution for Set 1
For a mesh of two linear elements (the minimum number needed
for Set 1 boundary conditions), with h; = h, = 0.5, the assembled

equations are
U, Qi
){Uz} = {Q% + Q12
Us Q3

1 -1 0 12 10

(2[—1 2 —1‘—/1E 1 4 1
o -1 1 0 1 2

The boundary conditions U(0) =0, Q3 + Q7 = 0,and U(1) = 0 require

U, = U; = 0. Hence, the eigenvalue problem reduces to the single

equation

4
<4_AE) U, =0,orA4y =12.0,U, # 0

The mode shape is given (within an arbitrary constant take U, =
1) by
U, i (x) = x/h = 2x 0<x<05

U(x) = Uy ®,(x) = {Uzlp%(x) =(R2h—x)/h=2(1-1)05<x<1.0
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Eigenvalue problems

For a mesh of one quadratic element, we have (h = 1.0)
16 16
?_/1% - 0,0T/11 — 100,U2 #* 0

The corresponding eigenfunction is

X X
UCx) = U,d,(x) = Uyl = 4%(1 7)'0 <x<10

The exact eigenvalues: 1, = (nm)? and 1, = (m)* = 9.8696

By comparison, one quadratic element gives more accurate
solution than two linear elements
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Eigenvalue problems

Natural Vibration of Beams

Euler-Bernoulli Beam
For the Euler-Bernoulli beam theory, the equation of motion is of

the form:
02w 04w 02 02w
PA—— — El— | =q(x,t)

gtz " Plgzgez T o\ Bl e

where p denotes the mass density per unit length, A the area of
cross section, £ the modulus and I the second moment of area.
The expression involving pl is called rotary inertia term

® Equation can be formulated as an eigenvalue problem in the
interest of finding the frequency of natural vibration by
assuming periodic motion
w(x, t) = W(x)e Wt
where w is the frequency of natural transverse motion and W(x) is
the mode shape of the transverse motion. Substitution into Euler-
Bernoulli beam equation, yields
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Eigenvalue problems

dx? dx?

The weak form of above Eq. is given by

o—fxb 1908 o w - 2012
) dx? dxz PO Plax dx | ™
o

d Eld2 + A IdW xb+ dv Eldzwx
dx dx? Pl dx dx?
where v is the weight function

Note: The rotary inertia term contributes to the shear force term,

giving rise to an effective shear force that must be known at a
boundary point when the deflection is unknown at the point

d? d*w d*w 5
El—= | — A| pAW — pldx2 =0 A=w

To obtain the finite element model of weak form, assume finite
element approximation of the form
W) = Z A5 ()

where ¢; are the Hermite cubic polynomials j=
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Eigenvalue problems

We obtain the finite element model
([Ke] — w2 [Me]{A°} = {Q°})

Xp 2 p€e J2 Xp e e
KE :j Eld d ¢] dx, Miej — La <pA¢ie¢]¢+pIddd;l ddqi])dx
Q3 = <E1 de)

'l dx?
Xa Xa

Qz = —<E1d2W>

e dx?
b

For constant values of EI and pA, the stiffness matrix [Ke] and
mass matrix [Me] are

Xb

6 —3h, —6 —3h,

ke — 2E.l,|-3h, 2h%2 3h, K2
~ThE | -6 3h, 6 3h,

| —3h, hZ 3h, 2hZ |
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Eigenvalue problems

" 156 —22h, 54  13h,
,DeAehe —22he 4hg —13he _3h§

el —
[M°] = 420 54 —13h, 156  22h,
| 13h —3hZ2  22h,  4hZ
" 36 —3h, —36 —3h,
L Pole| —3h 4hZ  3h, —h?

30h,| —36  3h, 36 3h,
__3he —hﬁ 3he 4h§ 1

When rotary inertia is neglected, we omit the second part of the
mass matrix in [M¢€]
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Eigenvalue problems

Timoshenko Beam
For the Timoshenko beam theory, the equation of motion is of the

form:
2w 0 ow
pA—— — = [GAKS (E + tp)] =0
0°Y 0 oY ow
p[ 572 — Y <Ela> + GAKS (a + l{J) =0

where G Is the shear modulus (¢ = E/2(1 + v)) and K, Is the shear
correction factor (K, = 5/6). Note that above Eq. contains the
rotary inertia term. Once again, we assume periodic motion and
write , ,

w(x, t) = W(x)e ™™, ¥ (x,t) = S(x)e ™t

and obtain the eigenvalue problem

d ow
——|GAK,{=— + s || —w?pAW =0

dx dx
%) 4+ car (22 + 251 = 0
dx dx s\ox )T WP
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Eigenvalue problems

For equal interpolation of W (x) and S(x),
W) = ) WSS = ) SFps)
- -

where y; are the (n — 1) order Lagrange polynomials, the finite
element model is given by

K] [K2]] LM o |\ fwd) _ ((FY
k2] (k22”7 | o M) 1S} T l{F2)

[K€¢] is the stiffness matrix and [M¢] is the mass matrix
lpl l/)]

K} = j GAK dx
Y Y *dx dx
ki = [ gar, Wl peax = g
=) sy Vi dx = Kji
dyf dyp;
K7 :Jf ( dxl dxj Wi | dx,
Xa
11 rxb 22 *b
Xq Xq
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Eigenvalue problems

F}l — Q2i—1;F}'2 = Q2

e = _|gak, (s + 2
1 — S S dx
Xa

¢ = |GAK + aw ¢ = El a5
37 s\ " ax red T dx
Xp Xp

For the choice of linear interpolation functions, we have

6 —3h, —6 —3h,
(Ke] = 2Ele\|-3h, hZ(1.5+6A.) 3h, hZ(1.5—6A.)
uoh3 )| —6 3h, 6 3h,
|—3he  h2(1.5—-6A,) 3he h2(1.5+ 6A,)]
2 0 1 o
peAe 0 Zre 0 Te Ie
el — —_
M ===t o 2 o|T=7
0 1, 0 27
Ne = Fele = 12A
¢ T G A K p2 Mo T Ml
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