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order differential equation that arises in the 
Euler-Bernoulli beam theory
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Euler-Bernoulli beam element

Euler-Bernoulli beam theory:
 It is assumed that plane cross sections perpendicular 

to the axis of the beam remain plane and perpendicular 
to the axis after deformation

In this theory, the transverse deflection w of the beam is 
governed by the fourth-order differential equation

𝐸𝐼 = 𝐸(𝑥)𝐼(𝑥)，𝑐𝑓 = 𝑐𝑓(𝑥)， 𝑞 = 𝑞(𝑥) are given functions of 𝑥
𝑤: Dependent variable, transverse deflection of the beam 
𝐸: Modulus of elasticity
𝐼: Scond moment of area about the y axis of the beam
𝑞: Distributed transverse load

𝑐𝑓 : Elastic foundation modulus

𝑑2

𝑑𝑥2
𝐸𝐼
𝑑2𝑤

𝑑𝑥2
+ 𝑐𝑓𝑤 = 𝑞(𝑥) 0<𝑥<L𝑓𝑜𝑟
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Euler-Bernoulli beam element

 w must satisfy appropriate boundary conditions, since 
the equation is of fourth order, four boundary 
conditions are needed to solve it

 The weak formulation of the equation will provide the 
form of these four boundary conditions

 A step-by-step procedure for the finite element 
analysis of DE will be presented 

Typical beam with distributed load 𝑞 and 

point force 𝐹 and moment 𝑀

Shear force-bending 

moment-deflection 

relations 

𝑑2

𝑑𝑥2
𝐸𝐼
𝑑2𝑤

𝑑𝑥2
+ 𝑐𝑓𝑤 = 𝑞(𝑥) 0<𝑥<L𝑓𝑜𝑟
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Euler-Bernoulli beam element

The domain of the straight beam is divided into a set of N line 
elements, each element 𝛺𝑒=(𝑥𝑎, 𝑥𝑏)=(𝑥𝑒 , 𝑥𝑒+1) having at least 
two end nodes

 The element is geometrically the same as that used for 
bars, the number and form of the primary and secondary 
unknowns at each node are dictated by the variational 
formulation of the differential equation

 In most practical problems, the discretization of a given 
structure into a minimum number of elements is often 
dictated by the geometry, loading, and material properties

Geometry and loads on a beam Finite element discretization
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Derivation of Element Equations

 Variational formulation (provides the primary and 
secondary variables of the problem)

 Suitable approximations, interpolation functions for the 
primary variables 

 Element equations

Euler-Bernoulli beam element

𝑑2

𝑑𝑥2
𝐸𝐼
𝑑2𝑤

𝑑𝑥2
+ 𝑐𝑓𝑤 = 𝑞(𝑥) 0<𝑥<L𝑓𝑜𝑟
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Euler-Bernoulli beam element

Construct the weak form over the element

𝑣(𝑥) is a weight function that is twice differentiable with respect to 𝑥
 The first term of the equation is integrated twice by parts, to yield 

two differentiations to the weight function 𝑣 while retaining two 
derivatives of the dependent variable 𝑤

 Now the differentiation is distributed equally between the weight 
function 𝑢 and the dependent variable 𝑤

 Because of the two integration by parts, there appear two 
boundary expressions, which are to be evaluated at the two 
boundary points

Weak Form 

0= 

𝑥𝑒

𝑥𝑒+1

𝑣[
𝑑2

𝑑𝑥2
𝐸𝐼
𝑑2𝑤

𝑑𝑥2
+ 𝑐𝑓𝑤 − 𝑞]𝑑𝑥

=  

𝑥𝑒

𝑥𝑒+1
𝑑𝑣

𝑑𝑥

𝑑

𝑑𝑥2
𝐸𝐼
𝑑2𝑤

𝑑𝑥2
+ 𝑐𝑓𝑤 − 𝑣𝑞 𝑑𝑥 + 𝑣

𝑑

𝑑𝑥
𝐸𝐼
𝑑2𝑤

𝑑𝑥2
𝑥𝑒

𝑥𝑒+1

=  

𝑥𝑒

𝑥𝑒+1

𝐸𝐼
𝑑2𝑣

𝑑𝑥2
𝑑2𝑤

𝑑𝑥2
+ 𝑐𝑓𝑣𝑤 − 𝑣𝑞 𝑑𝑥 + 𝑣

𝑑

𝑑𝑥
𝐸𝐼
𝑑2𝑤

𝑑𝑥2
−
𝑑𝑣

𝑑𝑥
𝐸𝐼
𝑑2𝑤

𝑑𝑥2
𝑥𝑒

𝑥𝑒+1
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Euler-Bernoulli beam element

 Examination of the boundary terms indicates that the 
essential boundary conditions involve the specification of 
the deflection 𝑤 and slope 𝑑𝑤/𝑑𝑥

 The natural boundary conditions involve the specification of 

the bending moment (𝐸𝐼
𝑑2𝑤

𝑑𝑥2
) and shear force (

𝑑

𝑑𝑥
𝐸𝐼
𝑑2𝑤

𝑑𝑥2
) at 

the endpoints of the element

0 =  

𝑥𝑒

𝑥𝑒+1

𝐸𝐼
𝑑2𝑣

𝑑𝑥2
𝑑2𝑤

𝑑𝑥2
+ 𝑐𝑓𝑣𝑤 − 𝑣𝑞 𝑑𝑥 + 𝑣

𝑑

𝑑𝑥
𝐸𝐼
𝑑2𝑤

𝑑𝑥2
−
𝑑𝑣

𝑑𝑥
𝐸𝐼
𝑑2𝑤

𝑑𝑥2
𝑥𝑒

𝑥𝑒+1
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Euler-Bernoulli beam element

For this case:

 There are two essential boundary conditions and two 
natural boundary conditions

 we must identify 𝑤 and 𝑑𝑤/𝑑𝑥 as the primary variables at 
each node (so that the essential boundary conditions are 
included in the interpolation)

 The natural boundary conditions always remain in the 
weak form and end up on the right-hand side of the 
equation

0 =  

𝑥𝑒

𝑥𝑒+1

𝐸𝐼
𝑑2𝑣

𝑑𝑥2
𝑑2𝑤

𝑑𝑥2
+ 𝑐𝑓𝑣𝑤 − 𝑣𝑞 𝑑𝑥 + 𝑣

𝑑

𝑑𝑥
𝐸𝐼
𝑑2𝑤

𝑑𝑥2
−
𝑑𝑣

𝑑𝑥
𝐸𝐼
𝑑2𝑤

𝑑𝑥2
𝑥𝑒

𝑥𝑒+1
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Euler-Bernoulli beam element

Introduce the following notation for the secondary variables

Q1
𝑒, Q3
𝑒: shear force

Q2
𝑒, Q4
𝑒: bending moment

Generalized 
forces:

corresponding displacements 
and rotations are called the 
generalized displacements

0 =  

𝑥𝑒

𝑥𝑒+1

𝐸𝐼
𝑑2𝑣

𝑑𝑥2
𝑑2𝑤

𝑑𝑥2
+ 𝑐𝑓𝑣𝑤 − 𝑣𝑞 𝑑𝑥 + 𝑣

𝑑

𝑑𝑥
𝐸𝐼
𝑑2𝑤

𝑑𝑥2
−
𝑑𝑣

𝑑𝑥
𝐸𝐼
𝑑2𝑤

𝑑𝑥2
𝑥𝑒

𝑥𝑒+1

Q1
𝑒 ≡
𝑑

𝑑𝑥
𝐸𝐼
𝑑2𝑤

𝑑𝑥2
𝑥𝑒

= −𝑉(𝑥𝑒)

Q2
𝑒 ≡ 𝐸𝐼

𝑑2𝑤

𝑑𝑥2
|𝑥𝑒 = −𝑀(𝑥𝑒)

Q3
𝑒 ≡ −

𝑑

𝑑𝑥
𝐸𝐼
𝑑2𝑤

𝑑𝑥2
𝑥𝑒+1

= 𝑉(𝑥𝑒+1)

Q
4
𝑒 ≡ − 𝐸𝐼

𝑑2𝑤

𝑑𝑥2
|𝑥𝑒+1= 𝑀(𝑥𝑒+1)
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Euler-Bernoulli beam element

Bilinear and linear forms of this problem:

A statement of the principle of virtual displacements (𝑢
denotes virtual displacement) for the Euler-Bernoulli beam 
theory

0 =  

𝑥𝑒

𝑥𝑒+1

𝐸𝐼
𝑑2𝑣

𝑑𝑥2
𝑑2𝑤

𝑑𝑥2
+ 𝑐𝑓𝑣𝑤 − 𝑣𝑞 𝑑𝑥

−𝑣(𝑥𝑒)𝑄1
𝑒 − −

𝑑𝑣

𝑑𝑥
|𝑥𝑒𝑄2
𝑒 − 𝑣(𝑥𝑒+1)𝑄3

𝑒 − −
𝑑𝑣

𝑑𝑥
|𝑥𝑒+1𝑄4

𝑒

)≡ 𝐵(𝑣, 𝑤) − 𝑙(𝑣

𝐵(𝑣, 𝑤) =  

𝑥𝑒

𝑥𝑒+1

𝐸𝐼
𝑑2𝑣

𝑑𝑥2
𝑑2𝑤

𝑑𝑥2
+ 𝑐𝑓𝑣𝑤 𝑑𝑥

𝑙(𝑣) =  
𝑥𝑒

𝑥𝑒+1

𝑣𝑞𝑑𝑥 + 𝑣(𝑥𝑒)𝑄1
𝑒 + −

𝑑𝑣

𝑑𝑥
|𝑥𝑒𝑄2
𝑒

+𝑣(𝑥𝑒+1)𝑄3
𝑒 + −

𝑑𝑣

𝑑𝑥
|𝑥𝑒+1𝑄4

𝑒



NA26018 Finite Element Analysis of  Solids and Fluids 

Euler-Bernoulli beam element

The quadratic functional (total potential energy) of the 
isolated beam element, is given by 

 First term in the square brackets represents the elastic 
strain energy due to bending

 Second is the strain energy stored in the elastic foundation, 
Third is the work done by the distributed load

 Remaining terms account for the work done by the 
generalized forces 𝑄𝐢

𝑒 in moving through the respective 
generalized displacements of the element

We may go from the total potential energy functional to the 
weak form by using the principle of minimum potential energy, 
𝛿Π = 0

 
𝑒
(𝑤) =  

𝑥𝑒

𝑥𝑒+1
𝐸𝐼

2

𝑑2𝑤

𝑑𝑥2

2

+
1

2
𝑐𝑓𝑤
2 − 𝑤𝑞 𝑑𝑥 − 𝑤(𝑥𝑒)𝑄1

𝑒 − 𝑤(𝑥𝑒+1)𝑄3
𝑒

− −
𝑑𝑤

𝑑𝑥
|𝑥𝑒𝑄2
𝑒 − 𝑤(𝑥𝑒+1)𝑄3

𝑒 − −
𝑑𝑤

𝑑𝑥
|𝑥𝑒+1𝑄4

𝑒
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Euler-Bernoulli beam element

Interpolation Functions

 Interpolation functions of an element be continuous with 
nonzero derivatives up to order two

 The approximation 𝑤ℎ
𝑒(𝑥) over a 

finite element should be twice 
differentiable and satisfies the 
interpolation properties (i.e.,
satisfies the essential boundary 
conditions of the element) 

0 =  

𝑥𝑒

𝑥𝑒+1

𝐸𝐼
𝑑2𝑣

𝑑𝑥2
𝑑2𝑤

𝑑𝑥2
+ 𝑐𝑓𝑣𝑤 − 𝑣𝑞 𝑑𝑥

−𝑣(𝑥𝑒)𝑄1
𝑒 − −

𝑑𝑣

𝑑𝑥
|𝑥𝑒𝑄2
𝑒 − 𝑣(𝑥𝑒+1)𝑄3

𝑒 − −
𝑑𝑣

𝑑𝑥
|𝑥𝑒+1𝑄4

𝑒

𝑤ℎ
𝑒(𝑥𝑒) = 𝑤1

𝑒 , 𝑤ℎ
𝑒(𝑥𝑒+1) = 𝑤2

𝑒 , 𝜃ℎ
𝑒(𝑥𝑒) = 𝜃1

𝑒 , 𝜃ℎ
𝑒(𝑥𝑒+1) = 𝜃2

𝑒
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Euler-Bernoulli beam element

There are a total of 4 conditions in an element (two per node),
a 4-parameter polynomial must be selected for w

expressing cej in terms of the primary nodal variables 

𝑤ℎ
𝑒(𝑥𝑒) = 𝑤1

𝑒 , 𝑤ℎ
𝑒(𝑥𝑒+1) = 𝑤2

𝑒 , 𝜃ℎ
𝑒(𝑥𝑒) = 𝜃1

𝑒 , 𝜃ℎ
𝑒(𝑥𝑒+1) = 𝜃2

𝑒 𝜃= − 𝑑  𝑤 𝑑 𝑥

𝛥1
𝑒 ≡ 𝑤ℎ

𝑒(𝑥𝑒), 𝛥2
𝑒 ≡ −
𝑑𝑤ℎ
𝑒

𝑑𝑥
|𝑥=𝑥𝑒 , 𝛥3

𝑒 ≡ 𝑤ℎ
𝑒(𝑥𝑒+1), 𝛥4

𝑒 ≡ −
𝑑𝑤ℎ
𝑒

𝑑𝑥
|𝑥=𝑥𝑒+1

𝑤(𝑥) ≈ 𝑤ℎ
𝑒(𝑥) = 𝑐1

𝑒 + 𝑐2
𝑒𝑥 + 𝑐3

𝑒𝑥2 + 𝑐4
𝑒𝑥3
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Euler-Bernoulli beam element

Inverting this matrix equation to express cej in terms of 𝛥1
𝑒, 

𝛥2
𝑒，𝛥3
𝑒 and 𝛥4

𝑒, and substituting the result to 𝑤ℎ
𝑒(𝑥)

𝛥1
𝑒 ≡ 𝑤ℎ

𝑒(𝑥𝑒) = 𝑐1
𝑒 + 𝑐2
𝑒𝑥𝑒 + 𝑐3

𝑒𝑥𝑒
2 + 𝑐4
𝑒𝑥𝑒
3

𝛥2
𝑒 ≡ −
𝑑𝑤ℎ
𝑒

𝑑𝑥
|𝑥=𝑥𝑒 = − 𝑐2

𝑒 − 2𝑐3
𝑒𝑥𝑒 − 3𝑐4

𝑒𝑥𝑒
2

𝛥3
𝑒 ≡ 𝑤ℎ

𝑒(𝑥𝑒+1) = 𝑐1
𝑒 + 𝑐2
𝑒𝑥𝑒+1 + 𝑐3

𝑒𝑥𝑒+1
2 + 𝑐4

𝑒𝑥𝑒+1
3

𝛥4
𝑒 ≡ −
𝑑𝑤ℎ
𝑒

𝑑𝑥
|𝑥=𝑥𝑒+1= −𝑐2

𝑒 − 2𝑐3
𝑒𝑥𝑒+1 − 3𝑐4

𝑒𝑥𝑒+1

𝛥1
𝑒

𝛥2
𝑒

𝛥3
𝑒

𝛥4
𝑒

=

1 𝑥𝑒 𝑥𝑒
2 𝑥𝑒

3

0 −1 −2𝑥𝑒 −3𝑥𝑒
2

1 𝑥𝑒+1 𝑥𝑒+1
2 𝑥𝑒+1

3

0 −1 −2𝑥𝑒+1 −3𝑥𝑒+1
2

𝑐1
𝑒

𝑐2
𝑒

𝑐3
𝑒

𝑐4
𝑒
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Euler-Bernoulli beam element

Cubic interpolation functions are derived by interpolating 𝑤 as 
well as its derivative 𝑑𝑤/𝑑𝑥 at the nodes

Hermite cubic (or cubic spline) 
interpolation functions

𝑤ℎ
𝑒(𝑥𝑒)=𝛥1

𝑒𝜙1
𝑒 + 𝛥2

𝑒𝜙2
𝑒 + 𝛥3

𝑒𝜙3
𝑒 + 𝛥4

𝑒𝜙4
𝑒 = 

𝑗=1

4

𝛥𝑗
𝑒𝜙𝑗
𝑒

𝑥𝑒+1 = 𝑥𝑒 + ℎ𝑒

𝜙1
𝑒 = 1 − 3

𝑥 − 𝑥𝑒
ℎ𝑒

2

+ 2
𝑥 − 𝑥𝑒
ℎ𝑒

3

𝜙2
𝑒 = −(𝑥 − 𝑥𝑒) 1 −

𝑥 − 𝑥𝑒
ℎ𝑒

2

𝜙3
𝑒 = 3

𝑥 − 𝑥𝑒
ℎ𝑒

2

+ 2
𝑥 − 𝑥𝑒
ℎ𝑒

3

𝜙4
𝑒 = −(𝑥 − 𝑥𝑒)

𝑥 − 𝑥𝑒
ℎ𝑒

2

−
𝑥 − 𝑥𝑒
ℎ𝑒
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Euler-Bernoulli beam element

 Recall that Lagrange cubic interpolation functions are 
derived to interpolate a function, but not its derivatives, at 
the nodes

 Hence, a Lagrange cubic element will have 4 nodes, with 
the dependent variable, not its derivative, as the nodal 
degree of freedom

 Since the slope (or derivative) of the dependent variable is 
also required by the weak form to be continuous at the 
nodes for the Euler-Bernoulli beam theory, the Lagrange 
cubic interpolation of 𝑤, although it meets the continuity 
requirement for 𝑤, is not admissible in the finite element 
approximation of the Euler-Bernoulli beam theory
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Euler-Bernoulli beam element

Hermite cubic interpolations functions used in the Euler-
Bernoulli beam element
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Euler-Bernoulli beam element

 𝑥 = 𝑥 − 𝑥𝑒

𝜙1
𝑒 = 1 − 3

 𝑥

ℎ𝑒

2

− 2
 𝑥

ℎ𝑒

3

, 𝜙2
𝑒 = −  𝑥 1 −

 𝑥

ℎ𝑒

2

𝜙3
𝑒 = 3

 𝑥

ℎ𝑒

2

− 2
 𝑥

ℎ𝑒

3

, 𝜙4
𝑒 = −  𝑥

 𝑥

ℎ𝑒

2

−
 𝑥

ℎ𝑒

𝜙1
𝑒 = 1 − 3

𝑥 − 𝑥𝑒
ℎ𝑒

2

+ 2
𝑥 − 𝑥𝑒
ℎ𝑒

3

𝜙2
𝑒 = −(𝑥 − 𝑥𝑒) 1 −

𝑥 − 𝑥𝑒
ℎ𝑒

2

𝜙3
𝑒 = 3

𝑥 − 𝑥𝑒
ℎ𝑒

2

+ 2
𝑥 − 𝑥𝑒
ℎ𝑒

3

𝜙4
𝑒 = −(𝑥 − 𝑥𝑒)

𝑥 − 𝑥𝑒
ℎ𝑒

2

−
𝑥 − 𝑥𝑒
ℎ𝑒
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Euler-Bernoulli beam element

The first, second and third derivatives of 𝜙𝑖
𝑒 with respect to 𝑥

are

𝑑𝜙1
𝑒

𝑑  𝑥
= −
6

ℎ𝑒

 𝑥

ℎ𝑒
1 −
 𝑥

ℎ𝑒

𝑑𝜙2
𝑒

𝑑  𝑥
= − 1 + 3

 𝑥

ℎ𝑒

2

− 4
 𝑥

ℎ𝑒

𝑑𝜙3
𝑒

𝑑  𝑥
= −
𝑑𝜙1
𝑒

𝑑  𝑥
=
6

ℎ𝑒

 𝑥

ℎ𝑒
1 −
 𝑥

ℎ𝑒

𝑑𝜙4
𝑒

𝑑  𝑥
= −
 𝑥

ℎ𝑒
3
 𝑥

ℎ𝑒
− 2

𝑑2𝜙1
𝑒

𝑑  𝑥2
= −
6

ℎ𝑒
2 1 − 2

 𝑥

ℎ𝑒

𝑑2𝜙2
𝑒

𝑑  𝑥2
= −
2

ℎ𝑒
3
 𝑥

ℎ𝑒
− 2

𝑑2𝜙3
𝑒

𝑑  𝑥2
= −
𝑑2𝜙1
𝑒

𝑑  𝑥2
=
6

ℎ𝑒
2 1 − 2

 𝑥

ℎ𝑒

𝑑2𝜙4
𝑒

𝑑  𝑥2
= −
2

ℎ𝑒
3
 𝑥

ℎ𝑒
− 1

𝑑3𝜙1
𝑒

𝑑  𝑥3
=
12

ℎ𝑒
3 ,
𝑑3𝜙2
𝑒

𝑑  𝑥3
= −
6

ℎ𝑒
2

𝑑3𝜙3
𝑒

𝑑  𝑥3
=
12

ℎ𝑒
3 ,
𝑑3𝜙4
𝑒

𝑑  𝑥3
= −
6

ℎ𝑒
2
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Euler-Bernoulli beam element

First derivatives 𝑑𝑤/𝑑𝑥 of the Hermite cubic interpolations 
functions
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Euler-Bernoulli beam element

Hermite cubic interpolation functions satisfy the following 
interpolations properties:

Can be stated in a compact form:

 𝑥1 = 0 and  𝑥1 = ℎ𝑒 are the local coordinates of nodes 1 and 2 of 
the element 𝛺𝑒 [𝑥𝑒, 𝑥𝑒+1]

𝜙1
𝑒 𝑥𝑒 = 1, 𝜙𝑖

𝑒 𝑥𝑒 = 0 (𝑖 ≠ 1)

𝜙3
𝑒 𝑥𝑒+1 = 1, 𝜙𝑖

𝑒 𝑥𝑒+1 = 0 (𝑖 ≠ 3)

−
𝑑𝜙2
𝑒

𝑑𝑥
|𝑥𝑒 = 1, −

𝑑𝜙𝑖
𝑒

𝑑𝑥
|𝑥𝑒 = 0 (𝑖 ≠ 2)

−
𝑑𝜙4
𝑒

𝑑𝑥
|𝑥𝑒+1 = 1, −

𝑑𝜙𝑖
𝑒

𝑑𝑥
|𝑥𝑒+1 = 0 (𝑖 ≠ 4)

𝜙2𝑖−1
𝑒 (  𝑥𝑗) = 𝛿𝑖𝑗, 𝜙2𝑖

𝑒 (  𝑥𝑗) = 0,  

𝑖=1

2

𝜙2𝑖−1
𝑒 = 1

𝑑𝜙2𝑖−1
𝑒

𝑑𝑥
|  𝑥𝑗 = 0, −

𝑑𝜙2𝑖−1
𝑒

𝑑𝑥
|  𝑥𝑗 = 𝛿𝑖𝑗
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Euler-Bernoulli beam element

Finite element solution over an element

𝑤ℎ
𝑒(𝑥𝑒)=𝛥1

𝑒𝜙1
𝑒 + 𝛥2

𝑒𝜙2
𝑒 + 𝛥3

𝑒𝜙3
𝑒 + 𝛥4

𝑒𝜙4
𝑒 = 

𝑗=1

4

𝛥𝑗
𝑒𝜙𝑗
𝑒
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Euler-Bernoulli beam element

 The order of the interpolation functions derived above is 
the minimum required for the variational formulation

 If a higher-order (i. e, higher than cubic) approximation 
of 𝑤 is desired, we must either identify additional primary
unknowns at each of the two nodes or add additional 
nodes with the two degrees of freedom (𝑤，−𝑑𝑤/𝑑𝑥)

For example, if we add 𝑑2𝑤/𝑑𝑥2as the primary unknown at 
each of the two nodes or add a third node with (𝑤,−𝑑𝑤/𝑑𝑥) 
at each node, there will be a total of six conditions, and a 
fifth-order polynomial is required to interpolate the end 
conditions. Interelement continuity of 𝑑2𝑤/𝑑𝑥2 is not 
required by the weak form

𝑤ℎ
𝑒(𝑥𝑒)=𝛥1

𝑒𝜙1
𝑒 + 𝛥2

𝑒𝜙2
𝑒 + 𝛥3

𝑒𝜙3
𝑒 + 𝛥4

𝑒𝜙4
𝑒 = 

𝑗=1

4

𝛥𝑗
𝑒𝜙𝑗
𝑒
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Euler-Bernoulli beam element

Finite Element Model

The finite element model of the Euler-Bernoulli beam is 
obtained by substituting the the finite element interpolation 

for 𝑤 and the 𝜙𝑗
𝑒 for the weight function 𝑣 into the weak form

 Since there are 4 nodal variables 𝛥𝑖
𝑒, 4 different choices are 

used for 𝑣: 𝑣 = 𝜙1
𝑒, 𝜙2
𝑒 , 𝜙3
𝑒 , 𝜙4
𝑒 allowing us to obtain a set of 4

algebraic equations
The ith algebraic equation of the finite element model is (𝑣 = 𝜙𝑖

𝑒)

𝑣 = 𝜙𝑖
𝑒

0 =  

𝑥𝑒

𝑥𝑒+1

𝐸𝐼
𝑑2𝑣

𝑑𝑥2
𝑑2𝑤

𝑑𝑥2
+ 𝑐𝑓𝑣𝑤 − 𝑣𝑞 𝑑𝑥

−𝑣(𝑥𝑒)𝑄1
𝑒 − −

𝑑𝑣

𝑑𝑥
|𝑥𝑒𝑄2
𝑒 − 𝑣(𝑥𝑒+1)𝑄3

𝑒 − −
𝑑𝑣

𝑑𝑥
|𝑥𝑒+1𝑄4

𝑒

𝑤ℎ
𝑒(𝑥𝑒)=𝛥1

𝑒𝜙1
𝑒 + 𝛥2

𝑒𝜙2
𝑒 + 𝛥3

𝑒𝜙3
𝑒 + 𝛥4

𝑒𝜙4
𝑒 = 

𝑗=1

4

𝛥𝑗
𝑒𝜙𝑗
𝑒
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Euler-Bernoulli beam element

Coefficients K are symmetric: 𝐾𝑖𝑗
𝑒 = 𝐾𝑗𝑖

𝑒

0 = 

𝑗=1

4

 
𝑥𝑒

𝑥𝑒+1

𝐸𝐼
𝑑2𝜙𝑖
𝑒

𝑑𝑥2
𝑑2𝜙𝑖
𝑒

𝑑𝑥2
+ 𝑐𝑓𝜙𝑖

𝑒𝜙𝑗
𝑒 𝑑𝑥 𝑢𝑗

𝑒 − 
𝑥𝑒

𝑥𝑒+1

𝜙𝑖
𝑒𝑞𝑑𝑥 − 𝑄𝑖

𝑒

 

𝑗=1

4

𝐾𝑖𝑗
𝑒𝛥𝑗
𝑒 − 𝐹𝑖

𝑒 = 0 or [𝐾𝑒]{𝛥𝑒} = {𝐹𝑒}

𝐹𝑖
𝑒 =  
𝑥𝑒

𝑥𝑒+1

𝜙𝑖
𝑒𝑞𝑑𝑥 + 𝑄𝑖

𝑒

𝐾𝑖𝑗
𝑒 =  

𝑥𝑒

𝑥𝑒+1

𝐸𝐼
𝑑2𝜙𝑖
𝑒

𝑑𝑥2
𝑑2𝜙𝑗
𝑒

𝑑𝑥2
+ 𝑐𝑓𝜙𝑖

𝑒𝜙𝑗
𝑒 𝑑𝑥
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Euler-Bernoulli beam element

For the case in which 𝐸𝐼 and 𝑞 are constant over an element, the 
element stiffness matrix 𝐾𝑒 have the following specific forms

=

𝐾11
𝑒 𝐾12

𝑒 𝐾13
𝑒 𝐾14

𝑒

𝐾21
𝑒 𝐾22

𝑒 𝐾23
𝑒 𝐾24

𝑒

𝐾31
𝑒 𝐾32

𝑒 𝐾33
𝑒 𝐾34

𝑒

𝐾41
𝑒 𝐾42

𝑒 𝐾43
𝑒 𝐾44

𝑒

𝛥1
𝑒

𝛥2
𝑒

𝛥3
𝑒

𝛥4
𝑒

=

𝑞1
𝑒

𝑞2
𝑒

𝑞3
𝑒

𝑞4
𝑒

+

𝑄1
𝑒

𝑄2
𝑒

𝑄3
𝑒

𝑄4
𝑒

𝐾𝑒

𝐾𝑖𝑗
𝑒 =  

𝑥𝑒

𝑥𝑒+1

𝐸𝐼
𝑑2𝜙𝑖
𝑒

𝑑𝑥2
𝑑2𝜙𝑗
𝑒

𝑑𝑥2
+ 𝑐𝑓𝜙𝑖

𝑒𝜙𝑗
𝑒 𝑑𝑥

=

6 −3ℎ𝑒 −6 −3ℎ𝑒
−3ℎ𝑒 2ℎ𝑒

2 3ℎ𝑒 ℎ𝑒
2

−6 3ℎ𝑒 6 3ℎ𝑒
−3ℎ𝑒 ℎ𝑒

2 3ℎ𝑒 2ℎ𝑒
2

+
𝑐𝑓
𝑒ℎ𝑒

420

156 −22ℎ𝑒 54 13ℎ𝑒
−22ℎ𝑒 4ℎ𝑒

2 −13ℎ𝑒 −3ℎ𝑒
2

54 −13ℎ𝑒 156 −22ℎ𝑒
13ℎ𝑒 −3ℎ𝑒

2 −22ℎ𝑒 4ℎ𝑒
2

 

𝑗=1

4

𝐾𝑖𝑗
𝑒𝛥𝑗
𝑒 − 𝐹𝑖

𝑒 = 0 or [𝐾𝑒]{𝛥𝑒} = {𝐹𝑒}

𝐾𝑒
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Force vector Fe

 It can be verified that the generalized force vector represents 
the "staticall equivalent" forces and moments at nodes 1 and 
2 due to the uniformly distributed load of intensity qe over 
the element

 For given function 𝑞(𝑥), provides a straightforward way of 
computing the components of the generalized force vector qe

Euler-Bernoulli beam element

𝐹𝑖
𝑒 =  
𝑥𝑒

𝑥𝑒+1

𝜙𝑖
𝑒𝑞𝑑𝑥 + 𝑄𝑖

𝑒

{𝐹𝑖
𝑒} =
𝑞𝑒ℎ𝑒
12

6
−ℎ𝑒
6
ℎ𝑒

+

𝑄1
𝑒

𝑄2
𝑒

𝑄3
𝑒

𝑄4
𝑒
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Recall Remark 5:

When a transverse 
point force 𝐹0

𝑒 is applied 
at a point 𝑥0 inside the 
element, it is 
distributed to the 
element nodes by the 
relation 

Euler-Bernoulli beam element

𝑞𝑖
𝑒 =  
𝑥𝑒

𝑥𝑒+1

𝜙𝑖
𝑒(𝑥)𝐹0

𝑒𝛿(𝑥 − 𝑥0)𝑑𝑥 = 𝐹0
𝑒𝜙𝑖
𝑒(𝑥0), 𝑥𝑒 ≤ 𝑥0 ≤ 𝑥𝑒+1
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Assembly of Element Equations

The assembly procedure for beam elements is the same as 
that used for bar elements except that we must take into 
account the two degrees of freedom at each node
 Interelement continuity of the primary variables (deflection 

and slope)
 Interelement equilibrium of the secondary variable (shear 

force and bending moment) at the nodes common to 
elements.

Euler-Bernoulli beam element
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Euler-Bernoulli beam element

To demonstrate the assembly procedure, we select a 2-element 
model

 There are 3 global nodes and a total of 6 global generalized 
displacements and 6 generalized forces in the problem 
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Euler-Bernoulli beam element

The continuity of the primary variables implies the following 
relation between the element degrees of freedom 𝛥𝑖

e and the 
global degrees of freedom U𝑖

𝛥1
1=U1, 𝛥3

1=U2, 𝛥3
1=𝛥1
2 =U3

𝛥4
1=𝛥2
2 =U4, 𝛥3

2 =U5 𝛥4
2 =U6
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Euler-Bernoulli beam element

In general, the equilibrium of the generalized forces at a node 

between two connecting elements Ω𝑒 and Ω𝑓 requires that

 If no external applied forces are given, the sum should be equated to zero
 In equating the sums to the applied generalized forces (force or moment)
the sign convention for the element force degrees of freedom should be 
followed:
Forces are taken as positive when they act in the direction of positive z-axis, 
and moments are taken as positive when they follow the right-hand screw 
rule (i.e, when the thumb is along the positive y-axis, the four fingers show 
the direction of the moment)

Forces acting 
downward are positive 
and counterclockwise 
moments are positive

𝑄3
𝑒 + 𝑄1

𝑓
= applied external point force

𝑄4
𝑒 + 𝑄2

𝑓
= applied external bending moment
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Euler-Bernoulli beam element

In general, the equilibrium of the generalized forces at a node 

between two connecting elements Ω𝑒 and Ω𝑓 requires that

 To impose the equiliibrium of forces, it is necessary to add the 
third and fourth equations (corresponding to the second node) of 
element Ωe to the first and second equations (corresponding to 
the first node) of element Ωf

 Global stiffness parameters 𝐾33, 𝐾3𝟒, 𝐾𝟒3 and 𝐾𝟒𝟒 associated with 
global node 2 are the superposition of the element stiffnesses

𝑄3
𝑒 + 𝑄1

𝑓
= applied external point force

𝑄4
𝑒 + 𝑄2

𝑓
= applied external bending moment

𝐾33 = 𝐾33
1 + 𝐾11

2 , 𝐾34 = 𝐾34
1 + 𝐾12

2

𝐾43 = 𝐾43
1 + 𝐾21

2 , 𝐾44 = 𝐾44
1 + 𝐾22

2
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Euler-Bernoulli beam element

In general, the assembled stiffness matrix and force vector for 
beam elements connected in series have the forms given in

Global node 1 Global node 2 Global node 3

1

2

3

[K] =

𝐾11
1 𝐾12

1 𝐾13
1 𝐾14

1

𝐾21
1 𝐾22

1 𝐾23
1 𝐾24

1

𝐾31
1 𝐾23

1 𝐾33
1 + 𝐾11

2 𝐾33
1 + 𝐾12

2 𝐾13
2 𝐾14

2

𝐾41
1 𝐾24

1 𝐾43
1 + 𝐾21

2 𝐾44
1 + 𝐾22

2 𝐾23
2 𝐾24

2

𝐾31
2 𝐾32

2 𝐾33
2 𝐾34

2

𝐾41
2 𝐾42

2 𝐾43
2 𝐾44

2

{𝐹} =

𝑞1
1

𝑞2
1

𝑞3
1 + 𝑞1

2

𝑞4
1 + 𝑞2

2

𝑞3
2

𝑞4
2

+

𝑄1
1

𝑄2
2

𝑄3
1 + 𝑄1

2

𝑄4
1 + 𝑄2

2

𝑄3
2

𝑄4
2
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