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Euler-Bernoulli beam element

Euler-Bernoulli beam theory:

® It is assumed that plane cross sections perpendicular
to the axis of the beam remain plane and perpendicular
to the axis after deformation

In this theory, the transverse deflection w of the beam is
governed by the fourth-order differential equation

d? d’w
@(E’ d_xZ) +opw =q(x) for 0<x<L

El = E(x)I(x), ¢f =cf(x), q=q(x)are given functions of x
w: Dependent variable, transverse deflection of the beam
E: Modulus of elasticity

I: Scond moment of area about the y axis of the beam

q: Distributed transverse load

¢s = Elastic foundation modulus
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Euler-Bernoulli beam element

d? d*w

E(EI W) + crw = q(x) for 0<x<L

® w must satisfy appropriate boundary conditions, since
the equation is of fourth order, four boundary
conditions are needed to solve it

® The weak formulation of the equation will provide the
form of these four boundary conditions

® A step-by-step procedure for the finite element

analysis of DE will be presented Shear force-bending
Typical beam with distributed load ¢ and "~ Mmoment-deflection
point force F and moment M, J/P relations
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Euler-Bernoulli beam element

The domain of the straight beam is divided into a set of N line

elements, each element 2¢=(x,, x,)=(x., x.+1) having at least
two end nodes

® The element is geometrically the same as that used for
bars, the number and form of the primary and secondary
unknowns at each node are dictated by the variational
formulation of the differential equation

® In most practical problems, the discretization of a given
structure into a minimum number of elements is often
dictated by the geometry, loading, and material properties
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Geometry and loads on a beam Finite element discretization
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Euler-Bernoulli beam element

Derivation of Element Equations

® Variational formulation (provides the primary and
secondary variables of the problem)

® Suitable approximations, interpolation functions for the

primary variables
® Element equations

d2

-y Xy, o

_ ¢th element
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d*w
ﬁ El _dxz + CrW = q(x) fOT' O<x<L
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Euler-Bernoulli beam element

Weak Form
Construct the weak form over the element

Xe+1 42 42w
= E] —— —
0 J [dxz < dx2> + ¢pw — qldx

v + P R AT
dxdx2 dx2 W rqax vdx dx? .

e

1 dPvdiw d [ d*w\ dv_ d?w]|"
:j lEI TxZ dxZ + crow — vq] dx + lva<El dx2> X El deL
v(x) is a weight function that is twice differentiable with respect to x
® The first term of the equation is integrated twice by parts, to yield
two differentiations to the weight function v while retaining two
derivatives of the dependent variable w
® Now the differentiation is distributed equally between the weight
function u and the dependent variable w
® Because of the two integration by parts, there appear two

boundary expressions, which are to be evaluated at the two
boundary points

. . . . MPUTATIONAL MARINE HYDRODYNAMI
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Euler-Bernoulli beam element

dzv d%w s I Eldzw dv Eldzw Tett
dxZ dx2 IV TP STV dx? dx  dx? N
[ Examlnatlon of the boundary terms indicates that the
essential boundary conditions involve the specification of

the deflection w and slope dw/dx
® The natural boundary conditions involve the specification of

d d?w
dx( dxz)) at

the endpoints of the element

X R _ ¢th element
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Euler-Bernoulli beam element

0= o El— d*v dw + dx + d El d*w v El d*w e
B dx? dx? rvw —vqax dx dx? dx  dx? y
X

e
e

For this case:

® There are two essential boundary conditions and two
natural boundary conditions

® we must identify w and dw/dx as the primary variables at
each node (so that the essential boundary conditions are
included in the interpolation)

® The natural boundary conditions always remain in the
weak form and end up on the right-hand side of the
equation

. . . . MPUTATIONAL MARINE HYDRODYNAMI
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Euler-Bernoulli beam element

Introduce the following notation for the secondary variables

d d*w
0, 0s: sheaI: force 0 = [dx (EI W)] = —V(x,)
0, 0.: bending moment Xe
2w
e = — e —

Generalized 0, = (EI dx2> lxe = =M(xe)
forces:

5= [ ()] -vewn

=~ 5= = V{Xe+1

corresponding displacements ’ d Xoi1 ’
and rotations are called the
generalized displacements 0 =— ( >|xe+1 M(%ppq)

0= o El— d*v d*w + dx + d El d*w v El d*w e
B dx? dx? rvw —rq ) ax vdx dx? dx  dx? .
X

e
e
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Euler-Bernoulli beam element

Xe+1
d?v d?w
0= Elﬁﬁ+cfvw—vq dx
Xe

dv dv
_v(xe)Qf _ <_ a> |er§ - v(xe+1)Q§ o <_ E) |xe+1Q§
= B(v,w) — l(v)

Bilinear and linear forms of this problem:

Xe+1
d?v d?w
B(v,w) = EIWW + crvw | dx
X

e

Xe+1 dv
l(v) = j qux + v(xe)Qf + <_ E) |er§
Xe

e dv e
+17(Xe+1)Q3+ _E |xe+1Q4

A statement of the principle of virtual displacements (u
denotes virtual displacement) for the Euler-Bernoulli beam

theory
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Euler-Bernoulli beam element

The quadratic functional (total potential energy) of the
iIsolated beam element, is given by

Xe
ClErgazw\t o1 ] .
1—[ (w) = S \gz) Tzow" —wa dx —w(xe)Q7 — W(Xe41)03
e
Xe
dw . . dw .
- _E |er2_W(xe+1)Q3_ _E |xe+1Q4

® First term in the square brackets represents the elastic
strain energy due to bending

® Second is the strain energy stored in the elastic foundation,
Third is the work done by the distributed load

® Remaining terms account for the work done by the
generalized forces Q7 in moving through the respective
generalized displacements of the element

We may go from the total potential energy functional to the

weak form by using the principle of minimum potential energy,

ol =0
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Euler-Bernoulli beam element

Interpolation Functions
(7 dPvdiw
0= <Elww+cf1ﬂw—vq) dx

dv dv
_v(xe)Qle _ <_ a> |eré2 _ v(xe+1)Q§ _ <_ E) |xe+1Qg

® Interpolation functions of an element be continuous with

nonzero derivatives up to order two

Undeformed

Beiin dlsrer ® The approximation wy; (x) over a
, finite element should be twice

/

l ' differentiable and satisfies the
< A interpolation properties (i.e.,
satisfies the essential boundary
conditions of the element)

“os=-| 2
“(/\ ) ey

Beam element

dw }
\ l/\ ,u‘

after deformation 6,

& erl(xe) = Wlerwﬁ(xe+1) = Wf,@ﬁ(xe) = 01, Qﬁ(xe+1) = 0;

CMH COMPUTATIONAL MARINE HYDRODYNAMICS LAB
SHANGHAI JIAO TONG UNIVERSITY

NA26018 Finite Element Analysis of Solids and Fluids




Euler-Bernoulli beam element

Wi (Xe) = Wi, Wi, (Xei1) = W3, 05 (xe) = 07, 05 (Xes1) = 03 O=—dw/dx

There are a total of 4 conditions in an element (two per node),
a 4-parameter polynomial must be selected for w

w(x) = wi(x) = cf + cSx + c§x? + c§x3

expressing cej in terms of the primary nodal variables

e e

e — € e — h e — € e — h
1 = Wh(xe), 43 = — dx |x=xe» 3 = Wp(Xeq1), 4% = — dx |x=xe+1
6 =A 0, = A 0. q U4 44
| Qe 2 | (e o) 2
- h R /f.
W= A\ W, = A Q). ‘l; Oy, 4,
Primary variables Secondary variables
(generalized displacements) () (generalized forces)
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Euler-Bernoulli beam element

C=wf(x,) =cf+cSx,+cSxz+cixd
dwy,
e — h — e e e.,.2
A; = ——— |x:xe = —C3 — 203Xe — 3C4 X5
dx
e — e — A€ e e.2 e..3
3 = Wp(Xet1) = €1 +CXeqq +C3Xo41 T CoXeyq
dwy
e — h _ e e e
Ay = ——— |x:xe+1— —C3 — 203Xe41 — 3C4Xet1
dx
fAi\ 1 x, xg xg T fcle\
<A§ | _ 0 -1 —-2x, —3x2 ) cs >
e — 2 3 e
A3 1 Xey1  Xoyq Xe+1 C3
e 2 e
L4 ) 0 =1 —2xe41 —3xg411\C4)

Inverting this matrix equation to express cej in terms of 4,
¢ 4% and 4%, and substituting the result to w; (x)
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Euler-Bernoulli beam element

4
Wi (o) =055 + B398 + U505 + 455 = ) A7
j=1

2 3
Hermite cubic (or cubic spline) 3¢ =1-3 (x _ xe) +2 (x — xe)

interpolation functions he he
. X — X,
¢z = —(x—x)|1— n
e
X —X 2 X — X 3
Xey1 = Xe + he ¢§:3 € + 2 €
h, h,

x—xe2 X — X,
=52 55

Cubic interpolation functions are derived by interpolating w as
well as its derivative dw/dx at the nodes

CMH COMPUTATIONAL MARINE HYDRODYNAMICS LAB
SHANGHAI JIAO TONG UNIVERSITY

NA26018 Finite Element Analysis of Solids and Fluids




Euler-Bernoulli beam element

® Recall that Lagrange cubic interpolation functions are
derived to interpolate a function, but not its derivatives, at
the nodes

® Hence, a Lagrange cubic element will have 4 nodes, with
the dependent variable, not its derivative, as the nodal
degree of freedom

® Since the slope (or derivative) of the dependent variable is
also required by the weak form to be continuous at the
nodes for the Euler-Bernoulli beam theory, the Lagrange
cubic interpolation of w, although it meets the continuity
requirement for w, is not admissible in the finite element
approximation of the Euler-Bernoulli beam theory

c M H COMPUTATIONAL MARINE HYDRODYNAMICS LAB



Euler-Bernoulli beam element

0, (x) * P4(x) A

h,

P(X) * 04(x%) ‘

‘.

Hermite cubic interpolations functions used in the Euler-
Bernoulli beam element

. . . . MPUTATIONAL MARINE HYDRODYNAMI
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Euler-Bernoulli beam element

2 3
e 4 ofX X X — X
pe =1 3( . ) +2< . )

2
05 = —(x = xo) (1 -= hexe)
e _ o[X " %e ? NEatZ ’
oi=3(5) 2 (5)

X — Xe ? X — X,
=52 55

D

f 2 f 3 ) f 2

o =1-3(3) -2(5) o1 =-(1-7)
. (% 2 7\’ e S

¢3‘3<h—) ‘Z(h—) s =3 (F) e
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Euler-Bernoulli beam element

The first, second and third derivatives of ¢; with respect to x
are

dx dx  h, h,| dx h,
d2 e 6 = d2 e 2 =
P1__ 01 X)L _ (X,
d 2 h2 h,) dx? he \" h,
d*¢;  d*¢f 6 ) 29? d*¢s 2 392 )
dx? ~  dx? = h2 h,] dx2 ~ h,\ h,

d3p¢ 12 d3¢S 6
dx3 3’ dx3 R
d3pS 12 d3¢¢ 6
dx3 3’ dx3 R
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Euler-Bernoulli

beam element

First derivatives dw/dx of the Hermite cubic interpolations

functions
2.0 1 ‘/Q?i'
H; dx

t/(l""

dx

1.0~

. »‘7"‘.‘").'1 daos,
0.5 - dx \ sy

0.0)

-().5

—1.0 T T T T T T T T T T T T T Y 1
0.0 0.2 (.4 (.6 0.5 1.0
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Euler-Bernoulli beam element

Hermite cubic interpolation functions satisfy the following
interpolations properties:

(.bf(xe) =1, ¢le (xe) =0 (i + 1)
¢§(xe+1) =1, lee (xe+1) =0 (i * 3)

dp3\, _ i\, _ .
<_ dx)lxe—L(_ dx)lxe—o (liZ)

ds doi .
<_ d_;> |xe+1 =1, <_d_xl |xe+1 =0 (i #4)

Can be stated in a compact fogm:

¢3i-1(%;) = 6;j, d3:(%;) = 0, z ¢34 =1
=1

dozi_q dziq
dx by = 0. dx % = %

x; = 0and x; = h, are the local coordinates of nodes 1 and 2 of

the element 0° [x,, x.;+1]
COMPUTATIONAL MARINE HYDRODYNAMICS LAB




Euler-Bernoulli beam element

Wi (xe) =AS0S + 4505 + 2505 + 4505 —ZA%,

n'(x)A

Finite element solution over an element

CMH COMPUTATIONAL MARINE HYDRODYNAMICS LAB
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Euler-Bernoulli beam element

4
Wi (o) =055 + A58 + U505 + 4565 = ) A%gS
j=1

® The order of the interpolation functions derived above is
the minimum required for the variational formulation

® If a higher-order (i. e, higher than cubic) approximation
of w is desired, we must either identify additional primary
unknowns at each of the two nodes or add additional
nodes with the two degrees of freedom (w, —dw/dx)

For example, if we add d?w/dx?as the primary unknown at
each of the two nodes or add a third node with (w, —dw/dx)
at each node, there will be a total of six conditions, and a
fifth-order polynomial is required to interpolate the end
conditions. Interelement continuity of d?w/dx? is not
required by the weak form

- : : : MPUTATIONAL MARINE HYDRODYNAMI
NA26018 Finite Element Analysis of Solids and Fluids CMHL S%ANGH% JIAO TOILG %ngll'g




Euler-Bernoulli beam element

Finite Element Model

The finite element model of the Euler-Bernoulli beam is
obtained by substituting the the finite element interpolation
for w and the ¢; for the weight function v into the weak form
® Since there are 4 nodal variables 4, 4 different choices are

used for v: v = ¢¢, p$5, d%, ¢5 allowing us to obtain a set of 4
algebraic equations

The ith algebraic equation of the finite element model is (v = ¢})

Wi (xe) =BSG5 + 4505 + 2505 + A5 —Zaeqb, —

Xe+1
dzv d*w N "
dxz dxz CrvW — vq

dv
_v(xe)Ql _ <_ ) |er2 v(xe+1)Q§ - <_ E) |xe+1Q2

. . . . MPUTATIONAL MARINE HYDRODYNAMI
NA26018 Finite Element Analysis of Solids and Fluids CMH SEIANGH% JIAO TONG %ngf‘{“{,



Euler-Bernoulli beam element

-3

j=1

Xe+1 d2¢ie d2¢ie Xe+1
l <E1 dx? dx? | Cfd)‘?qbf) | _f piadx =0

Xe Xe

4
z KEAS — FE = 0 or [Ke]{4°} = (F€)
=

Xe+1 d2¢e d2¢€
K = (EI dle dxzf + cf¢f</)]‘?> dx
X

e

Xe+1
Fe = j Cqdx + QF
X

e

Coefficients K are symmetric: K;; = Kj;

CMH COMPUTATIONAL MARINE HYDRODYNAMICS LAB
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Euler-Bernoulli beam element

4
> Kgag —FE =0 or [K){4%) = (F)
=

K11 Kz Kis Kiy fAi\ f‘lf\ er\

o K31 K32 K3z Kzu|)45 qs 4+ Q3
K] Tlks kS kg Ksa|)as( ™ \as( )8
Ki1 Kiz Kiz Kis LAzeU \qffj LQEJ

.

For the case in which EI and g are constant over an element, the
element stiffness matrix K¢ have the following specific forms

Xe+1 dzd)_e d2¢](_3
l
Kf = <E1 22 dx? +cf¢f¢f> dx
X

e

6 —3h, —6 —3h,] " 156  —22h, 54 13h, |

o _|—3he 2hZ 3R, R cfhe|—-22h, 4h% —13h, —3h2
KT =| —6¢  3n, 6 3n, |Taz20| 54 —13n, 156 —22h,
—3h, hZ 3h, 2h2 | | 13h, —3h% —22h, 4hZ |
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Euler-Bernoulli beam element

; 4o

Force vector Fe

e %I LT }
P = ¢;qdx + Q;

Xe —f —

6 rQ]e_\ ¢ Jy~ “"l\‘.
Q3 12 12

{ l } 12 6 Qg Statically equivalent point loads
he kQEJ # as computed by Eq. (5.2.19)

(ol Yol
3 g 3 ‘

® It can be verified that the generalized force vector represents
the "staticall equivalent"” forces and moments at nodes 1 and
2 due to the uniformly distributed load of intensity ge over
the element

® For given function g(x), provides a straightforward way of
computing the components of the generalized force vector ge
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Euler-Bernoulli beam element

o

When a transverse I l l l l l l l l Uniformly distributed load

point force F¢ is applied "™

at a point x, inside the

element, it is il @

distributed to the ( 12 12
| )

Recall Remark 5:

Statically equivalent point loads

element nodes by the
relation

as computed by Eq. (5.2.19)

Xe+1
af = ] S OFES(x — xo)dx = FSPS(Xo), %o < Xo < Xous
X

e
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Euler-Bernoulli beam element

Assembly of Element Equations

The assembly procedure for beam elements is the same as

that used for bar elements except that we must take into

account the two degrees of freedom at each node

® Interelement continuity of the primary variables (deflection
and slope)

® Interelement equilibrium of the secondary variable (shear
force and bending moment) at the nodes common to
elements.

. . . . MPUTATIONAL MARINE HYDRODYNAMI
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Euler-Bernoulli beam element

To demonstrate the assembly procedure, we select a 2-element
model

® There are 3 global nodes and a total of 6 global generalized
displacements and 6 generalized forces in the problem

F,
) "
Element node Global node
numbers numbers
l.‘ 1' | \ __'4_7_.-" ‘—.\_.. \
| 2 ll e S—) )
‘ \¢ eth element 2 f th element 3
\ 5
] ol = hl‘ ki -t ]){ .J /
[ / I \\'1‘{ A 3
— A=A
Py > i | /
A‘ / = ()1 )4
N g o
i R - e
e I A - A
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SHANGHAI JIAO TONG UNIVERSITY

NA26018 Finite Element Analysis of Solids and Fluids




Euler-Bernoulli beam element

The continuity of the primary variables implies the following
relation between the element degrees of freedom 47 and the

global degrees of freedom U

A =Uy, A3 =U,, A3=A7 =Uj

Ay =45 =U,, A3 =Us A3 =U;
Fy .
Element node (_nlohull node
numbers numbers
M, .\ i :
¥ g eth element 2 f th element 37
V /
W =4 — h, ————— h, -
¢ / : W / \ "
e ,_‘\; _:\I 2 1
( Al : £ o |
Ul A 2 0/&_/_/"/ 1_“ b A R
e =
\___! = R g
“——-—-______}: | s\":

NA26018 Finite Element Analysis of Solids and Fluids
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Euler-Bernoulli beam element

In general, the equilibrium of the generalized forces at a node
between two connecting elements Q, and Q requires that
Q5 + Q{ = applied external point force

Qs + Qg = applied external bending moment

® If no external applied forces are given, the sum should be equated to zero
® In equating the sums to the applied generalized forces (force or moment)
the sign convention for the element force degrees of freedom should be
followed:

Forces are taken as positive when they act in the direction of positive z-axis,
and moments are taken as positive when they follow the right-hand screw
rule (i.e, when the thumb is along the positive y-axis, the four fingers show

the direction of the moment)

: | () O, 1/(,
. ® % ot o of j Forces acting
L. J @ J downward are positive
{ ) ’m\ 3 and counterclockwise
0f 0, o U | 0, moments are positive

. /"u
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Euler-Bernoulli beam element

In general, the equilibrium of the generalized forces at a node
between two connecting elements Q, and Q, requires that

Q35 + Q{ = applied external point force

Qs + Q{ = applied external bending moment

® To impose the equiliibrium of forces, it is necessary to add the
third and fourth equations (corresponding to the second node) of
element Qe to the first and second equations (corresponding to
the first node) of element Qf

® Global stiffness parameters K;;, K34, K43 and K4, associated with
global node 2 are the superposition of the element stiffnesses

() I()

‘ | | _ 1 2 _ i 2
0] 0! o/ K3z = K33+ K{;, K34 = K34, + K7

ll © 31 I ” L ) 4 Kis = Kiz + K2, Koo = Kiy + K3,
I ) -3
((! (‘)Il > | >

0’
() () 4

- : : : | MPUTATIONAL MARINE HYDRODYNAMI
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Euler-Bernoulli beam element

In general, the assembled stiffness matrix and force vector for
beam elements connected in series have the forms given in

Global node 1 Global node 2
— | , |
K11 Ki> K3 Ki4
K3, K3, K35 K34
K] = K31 K3z K33 +Kfy Ki3+Kp
Ki1n Kjs Kis+ K3 Kiy+ K3
K K
ki K
( q% ) ( Qfll )
qz 5
_Jaz+q3f Q3 + Q7
{F}=1:7"17 S¢r+{ ] > [
qz + q3 Qi + Q3
q3 Q3
L ¢ ) U @} )

NA26018 Finite Element Analysis of Solids and Fluids

Global node 3
——

}1
K& KA,
K53 K3 |
2 2 7]
K33 K34 _ 3
Kis Kil
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