

Convection-dominated problems

Convection-dominated problems

Scalar transport equation

$$\frac{\partial u}{\partial t} + \nabla \cdot (\mathbf{v}u) = \nabla \cdot (\epsilon \nabla u)$$

Incompressible Navier-Stokes equations

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = \nu \Delta \mathbf{u}, \quad \nabla \cdot \mathbf{u} = 0$$

Da-

high-order method: wiggles

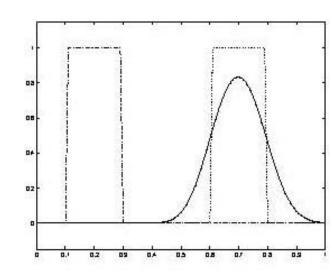
Compressible Euler equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$\frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v}) + \nabla p = 0$$

$$\frac{\partial (\rho E)}{\partial t} + \nabla \cdot (\rho H \mathbf{v}) = 0$$

$$\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial x} = 0$$



low-order method: smearing

Modern high-resolution schemes

Flux-Corrected Transport (FCT) paradigm

Boris & Book (1973)

- 1. Compute a provisional solution by a monotone method of low order
- 2. Determine the percentage of artificial diffusion that can be removed without generating new extrema and accentuating already existing ones
- 3. Add limited antidiffusion to recover the high accuracy in smooth regions

State of the art: MUSCL, PPM, TVD, LED, ENO are widely used

- geometric construction
- one-dimensional nature
- cartesian or simplex meshes
- explicit time discretization
- finite differences/volumes

Objective: a general methodology applicable to implicit FEM discretizations

Design of high-resolution schemes

LED criterion (Jameson, 1993) A semi-discrete scheme of the form

$$\frac{\mathrm{d}u_i}{\mathrm{d}t} = \sum_j c_{ij} u_j, \qquad \text{where} \quad c_{ii} = -\sum_{j \neq i} c_{ij} \quad \text{and} \quad c_{ij} \geq 0, \quad \forall j \neq i$$

so that $\frac{du_i}{dt} = \sum_{i \neq i} c_{ij}(u_j - u_i)$ proves local extremum diminishing since

• maxima do not increase:
$$u_i = \max_j u_j \implies u_j - u_i \le 0 \implies \frac{\mathrm{d}u_i}{\mathrm{d}t} \le 0$$

• maxima do not increase:
$$u_i = \max_j u_j \implies u_j - u_i \le 0 \implies \frac{\mathrm{d}u_i}{\mathrm{d}t} \le 0$$

• minima do not decrease: $u_i = \min_j u_j \implies u_j - u_i \ge 0 \implies \frac{\mathrm{d}u_i}{\mathrm{d}t} \ge 0$

Total variation $TV(u) = 2 \left(\sum \max u - \sum \min u \right)$ is non-increasing

Conclusion: the LED criterion represents a handy generalization of Harten's TVD theorem to multidimensional discretizations on unstructured meshes.

Design of high-resolution schemes

Discretization in time by the standard θ -scheme

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} = \theta \sum_{j \neq i} c_{ij} (u_j^{n+1} - u_i^{n+1}) + (1 - \theta) \sum_{j \neq i} c_{ij} (u_j^n - u_i^n)$$

Fully discrete LED schemes are positivity-preserving i.e. $u^n \ge 0 \Rightarrow u^{n+1} \ge 0$ under the CFL-like condition $1 + \Delta t(1 - \theta) \min_{i} c_{ii} \ge 0$ for $0 \le \theta < 1$.

Definition. A nonsingular discrete operator $A \in \mathbb{R}^{N \times N}$ is called an *M-matrix* if $a_{ij} \leq 0$ for $i \neq j$ and all entries of the inverse A^{-1} are nonnegative.

Positivity criterion A fully discrete scheme is positivity-preserving if it can be cast in the form $Au^{n+1} = Bu^n$ where A is an M-matrix and $B \ge 0$.

Strategy: discretize in space by a standard high-order method (central differences, Galerkin FEM) and modify the matrices so as to satisfy the above criteria.

Roadmap of algebraic manipulations

Scalar conservation law

$$\frac{\partial u}{\partial t} + \nabla \cdot (\mathbf{v}u) = 0$$

continuity equation

1. Linear high-order scheme

$$M_C rac{\mathrm{d}u}{\mathrm{d}t} = Ku$$
 (Galerkin FEM)

such that $\exists j \neq i : k_{ij} < 0$

2. Linear low-order scheme

$$M_L rac{\mathrm{d}u}{\mathrm{d}t} = Lu, \quad L = K + D$$
 such that $l_{ij} \geq 0, \ orall j
eq i$

3. Nonlinear high-resolution scheme

$$M_L \frac{\mathrm{d}u}{\mathrm{d}t} = K^*u, \quad K^* = L + F$$
 such that $\exists \ j \neq i: \ k_{ij}^* < 0$

Equivalent LED representation

$$M_L \frac{\mathrm{d}u}{\mathrm{d}t} = L^*u, \quad L^*u = K^*u$$
 such that $l_{ij}^* \geq 0, \ \forall j \neq i$

The existence of L^* is sufficient for $K^* = K + D + F$ to be nonoscillatory

Galerkin FEM: efficient matrix assembly

$$\int\limits_{\Omega} w \left[rac{\partial u}{\partial t} +
abla \cdot (\mathbf{v}u) \right] \, \mathrm{d}\mathbf{x} = 0$$

$$u_h = \sum_j u_j \varphi_j, \quad (\mathbf{v}u)_h = \sum_j (\mathbf{v}_j u_j) \varphi_j$$

Semi-discrete scheme

$$M_C \frac{\mathrm{d}u}{\mathrm{d}t} = Ku$$

$$M_C rac{\mathrm{d} u}{\mathrm{d} t} = K u \qquad \qquad M_C = \{m_{ij}\}, \quad K = \{k_{ij}\}$$

$$m_{ij} = \int_{\Omega} \varphi_i \varphi_j \, d\mathbf{x}, \qquad k_{ij} = -\mathbf{v}_j \cdot \mathbf{c}_{ij}$$

$$k_{ij} = -\mathbf{v}_j \cdot \mathbf{c}_{ij}$$

$$\mathbf{c}_{ij} = \int_{\Omega} arphi_i
abla arphi_j \, \mathrm{d}\mathbf{x}, \qquad \mathbf{c}_{ii} = -\sum_{j
eq i} \mathbf{c}_{ij}$$

$$\mathrm{c}_{ii} = -\sum_{j
eq i} \mathrm{c}_{ij}$$

Remark. The coefficients m_{ij} and c_{ij} remain unchanged as long as the mesh is fixed so that there is no need for costly numerical integration.

Discrete upwinding for finite elements

Lumped-mass Galerkin scheme

Linear LED discretization

$$M_L rac{\mathrm{d} u}{\mathrm{d} t} = K u$$
 $L = K + D$

$$L = K + D$$

$$M_L rac{\mathrm{d} u}{\mathrm{d} t} = L u$$

$$m_i \frac{\mathrm{d}u_i}{\mathrm{d}t} = \sum_{j \neq i} k_{ij}(u_j - u_i) + \delta_i u_i \qquad m_i = \sum_j m_{ij}, \qquad \delta_i = \sum_j k_{ij}$$

$$m_{m{i}} = \sum_{m{j}} m_{m{i}m{j}}, \qquad \delta_{m{i}} = \sum_{m{j}} k_{m{i}m{j}}$$

Artificial diffusion term: $(Du)_i = \sum_{i \neq i} f_{ij}, \qquad f_{ij} = d_{ij}(u_j - u_i), \quad f_{ji} = -f_{ij}$

$$f_{ij}=d_{ij}(u_j-u_i), \quad f_{ji}=-f_{ij}$$

Implementation: start with L := K

$$l_{ii} := l_{ii} - d_{ij},$$
 $l_{ij} := l_{ij} + d_{ij}$ $l_{ji} := l_{ji} + d_{ij},$ $l_{jj} := l_{jj} - d_{ij}$

Graph orientation: let the edge ij be directed so that $l_{ji} \geq l_{ij} = \max\{0, k_{ij}\}$

$$d_{ij} = \max\{0, -k_{ij}, -k_{ji}\}$$

Discrete upwinding in one dimension

Convection equation

$$\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial x} = 0, \quad v > 0$$

linear finite elements

Element matrices

$$\hat{M}_C = rac{\Delta x}{6} \left[egin{array}{cc} 2 & 1 \ 1 & 2 \end{array}
ight], \qquad \hat{M}_L = rac{\Delta x}{2} \left[egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight]$$

$$\hat{K} = \begin{bmatrix} \frac{v}{2} & -\frac{v}{2} \\ \frac{v}{2} & -\frac{v}{2} \end{bmatrix}, \quad \hat{D} = \begin{bmatrix} -\frac{v}{2} & \frac{v}{2} \\ \frac{v}{2} & -\frac{v}{2} \end{bmatrix} \qquad \Rightarrow \qquad \hat{L} = \hat{K} + \hat{D} = \begin{bmatrix} 0 & \mathbf{0} \\ v & -v \end{bmatrix}$$

High-order discretization

$$\frac{\mathrm{d}u_i}{\mathrm{d}t} + v \ \frac{u_{i+1} - u_{i-1}}{2\,\Delta x} = 0$$

central difference scheme

Low-order discretization

$$\frac{\mathrm{d}u_i}{\mathrm{d}t} + v \ \frac{u_i - u_{i-1}}{\Delta x} = 0$$

upwind difference scheme

Graph orientation: our convention $l_{ji} \geq l_{ij}$ implies that node i is located upwind

TVD discretization in one dimension

Antidiffusive correction

$$\hat{K}^*(u) = \hat{L} - \Phi(r_i)\hat{D} = \hat{K} + [1 - \Phi(r_i)]\hat{D}$$

$$r_i = \frac{u_i - u_{i-1}}{u_{i+1} - u_i}$$

 $slope\ ratio\$ evaluated at the upwind node i

LED representation

$$\frac{\mathrm{d}u_i}{\mathrm{d}t} = c_{i-1/2}(u_{i-1} - u_i) + c_{i+1/2}(u_{i+1} - u_i)$$

where
$$c_{i-1/2} = \frac{v}{2\Delta x} \left[2 + \frac{\Phi(r_i)}{r_i} - \Phi(r_{i-1}) \right] \ge 0, \quad c_{i+1/2} = 0$$

Standard flux limiters

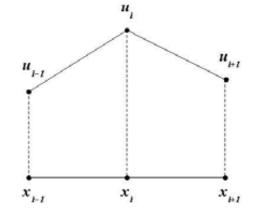
$$\Phi(r) = \frac{r + |r|}{1 + |r|} \qquad \text{VL}$$

$$\Phi(r) = \max\{0, \min\{1, r\}\}$$

$$\Phi(r) = \max\{0, \min\left\{\frac{1+r}{2}, 2, 2r\right\}\}$$

SB

$$\Phi(r) = \max\{0, \min\{1, 2r\}, \min\{2, r\}\}$$



TVD discretization in one dimension

Standard flux limiters as two-parameter functions

VL
$$\mathcal{L}(a,b) = \mathcal{S}(a,b) \frac{2|a||b|}{|a|+|b|}$$
 $\mathcal{S}(a,b) = \frac{\operatorname{sign}(a) + \operatorname{sign}(b)}{2}$ MM $\mathcal{L}(a,b) = \mathcal{S}(a,b) \min\{|a|,|b|\}$

$$\Phi(r) = \mathcal{L}(1,r)$$

MC
$$\mathcal{L}(a,b) = \mathcal{S}(a,b) \min \{0.5|a+b|, 2|a|, 2|b|\}$$

SB
$$\mathcal{L}(a,b) = \mathcal{S}(a,b) \max\{\min\{2|a|,|b|\},\min\{|a|,2|b|\}\}$$

Properties of limited average operators

Jameson~(1993)

•
$$\mathcal{L}(a,b) = 0$$
 if $ab \le 0$ \Rightarrow $\Phi(r) = 0$ if $r \le 0$
• $\mathcal{L}(ca,cb) = c\mathcal{L}(a,b)$ \Rightarrow $\Phi(r) = \mathcal{L}(1,r) = r\mathcal{L}(1/r,1)$

•
$$\mathcal{L}(a,b) = \mathcal{L}(b,a)$$
 \Rightarrow $\mathcal{L}(1/r,1) = \mathcal{L}(1,1/r) = \Phi(1/r)$

$$\Phi(r_i)(u_{i+1} - u_i) = \mathcal{L}(u_{i+1} - u_i, u_i - u_{i-1}) = \Phi(1/r_i)(u_i - u_{i-1})$$

Generalized FEM-TVD formulation

Modified transport operator

$$K^*(u) = L + F(u) = K + D + F(u)$$

Limited antidiffusive fluxes

$$(Fu)_i = \sum_{j \neq i} f^a_{ij}$$

$$f_{ij}^a = \min\{\Phi(r_i)d_{ij}, l_{ji}\}(u_i - u_j), \quad f_{ji}^a := -f_{ij}^a$$

$$M_L rac{\mathrm{d}u}{\mathrm{d}t} = K^*u$$

Nontrivial case
$$d_{ij} > 0$$
, $l_{ji} > l_{ij} = 0$

$$a_{ij} := \min\{d_{ij}, l_{ji}/\Phi(r_i)\}\$$

$$f_{ij}^a = \Phi(r_i)a_{ij}(u_i - u_j) = \Phi(1/r_i)a_{ij}\Delta u_{ij}$$

$$\Delta u_{ij} := r_i(u_i - u_j)$$

Sufficient LED condition

$$\Delta u_{ij} = \sum_{k \neq i} c_{ik} (u_k - u_i), \quad c_{ik} \ge 0, \quad \forall k \ne i$$

$$(K^*u)_i \leftarrow k_{ij}^*(u_j - u_i) = \Phi(1/r_i)a_{ij}\Delta u_{ij}$$

$$\Phi(1/r_i)a_{ij} \geq 0$$

$$(K^*u)_j \leftarrow k_{ii}^*(u_i - u_j) = [l_{ji} - \Phi(r_i)a_{ij}](u_i - u_j)$$

$$l_{ji} \ge \Phi(r_i)a_{ij}$$

Algebraic flux correction of TVD type

Incompressible part of
$$Ku$$

$$\sum_{j\neq i} k_{ij}(u_j - u_i) = P_i + Q_i \qquad nodal \ increment$$

$$P_{i} = P_{i}^{+} + P_{i}^{-}, \qquad P_{i}^{\pm} = \sum_{j \neq i} \min\{0, k_{ij}\} \min_{\max}^{\min}\{0, u_{j} - u_{i}\} \qquad downstream \ data$$

$$Q_i = Q_i^+ + Q_i^-, \qquad Q_i^{\pm} = \sum_{j \neq i} \max\{0, k_{ij}\}_{\min}^{\max}\{0, u_j - u_i\} \qquad upstream \ data$$

Nodal correction factors

$$R_i^{\pm} = \Phi(Q_i^{\pm}/P_i^{\pm})$$

for all fluxes f_{ij}^a , $j \neq i$

Smoothness indicator

Limited antidiffusive fluxes

$$r_{i} = \begin{cases} Q_{i}^{+}/P_{i}^{+} & \text{if } u_{i} \geq u_{j} \\ Q_{i}^{-}/P_{i}^{-} & \text{if } u_{i} < u_{j} \end{cases} \qquad f_{ij}^{a} = \begin{cases} \min\{R_{i}^{+}d_{ij}, l_{ji}\}(u_{i} - u_{j}) & \text{if } u_{i} \geq u_{j} \\ \min\{R_{i}^{-}d_{ij}, l_{ji}\}(u_{i} - u_{j}) & \text{if } u_{i} < u_{j} \end{cases}$$

LED property

$$\Delta u_{ij} = r_i(u_i - u_j) = \alpha_{ij}Q_i^{\pm}$$

$$\Delta u_{ij} = r_i(u_i - u_j) = \alpha_{ij}Q_i^{\pm}$$
 $\alpha_{ij} = \max_{\min} \{0, u_i - u_j\}/P_i^{\pm} \ge 0$

Iterative defect correction

Discretization in time yields a nonlinear algebraic system

$$M_L \frac{u^{n+1} - u^n}{\Delta t} = \theta K^*(u^{n+1})u^{n+1} + (1 - \theta)K^*(u^n)u^n$$

standard θ —scheme

Successive approximations

$$u^{(m+1)} = u^{(m)} + [A(u^{(m)})]^{-1}r^{(m)}$$

$$u^{(0)} = u^n, \qquad m = 0, 1, 2, \dots$$

Practical implementation

$$A(u^{(m)})\Delta u^{(m+1)} = r^{(m)}$$

$$u^{(m+1)} = u^{(m)} + \Delta u^{(m+1)}$$

'Upwind' preconditioner $A(u^{(m)}) = M_L - \theta \Delta t L(u^{(m)}), \quad 0 < \theta \le 1$

Defect vector and right-hand side

$$r^{(m)} = b^n - A(u^{(m)})u^{(m)} + \theta \Delta t f^{(m)}$$

$$b^n = M_L u^n + (1 - \theta) \Delta t [L(u^n)u^n + f^n]$$

Limited antidiffusive fluxes

$$f_i = \sum_{j \neq i} f^a_{ij}, \quad f^a_{ji} = -f^a_{ij}$$

constructed edge-by-edge

Summary of the FEM-TVD algorithm

In a loop over edges:

- 1. Retrieve the entries k_{ij} and k_{ji} of the high-order transport operator
- 2. Increment the sums of upstream and downstream edge contributions
- 3. Determine the artificial diffusion coefficient d_{ij} for discrete upwinding
- 4. Modify the entries a_{ii} , a_{ij} , a_{ji} , a_{jj} of the low-order preconditioner A
- 5. Adopt the 'upwind-downwind' edge orientation $i\vec{j}$ such that $l_{ji} \geq l_{ji}$

In a loop over nodes:

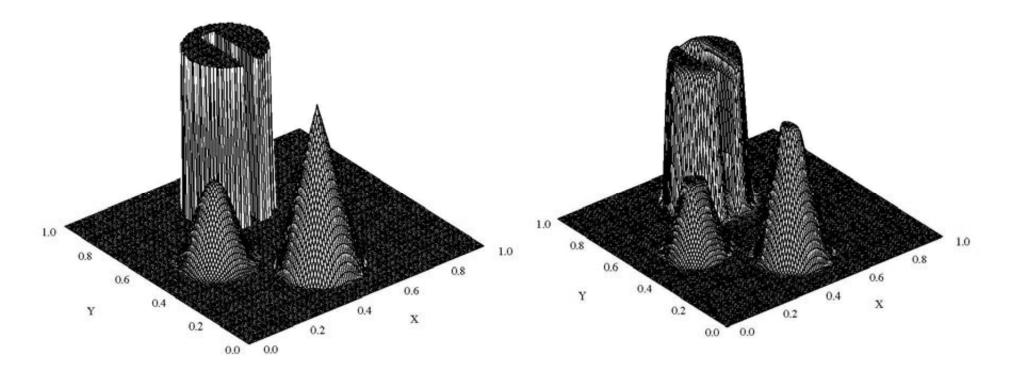
6. Evaluate the ratio Q_i^{\pm}/P_i^{\pm} and apply a TVD limiter Φ to obtain R_i^{\pm} In a loop over edges:

- 7. Compute the diffusive flux $f_{ij}^d = d_{ij}(u_j u_i)$ due to discrete upwinding
- 8. Check the sign of $u_j u_i$ and compute the limited antidiffusive flux f_{ij}^a
- 9. Insert the net artificial diffusion $f_{ij} = f_{ij}^d + f_{ij}^a$ into the defect vector r

Example: solid body rotation

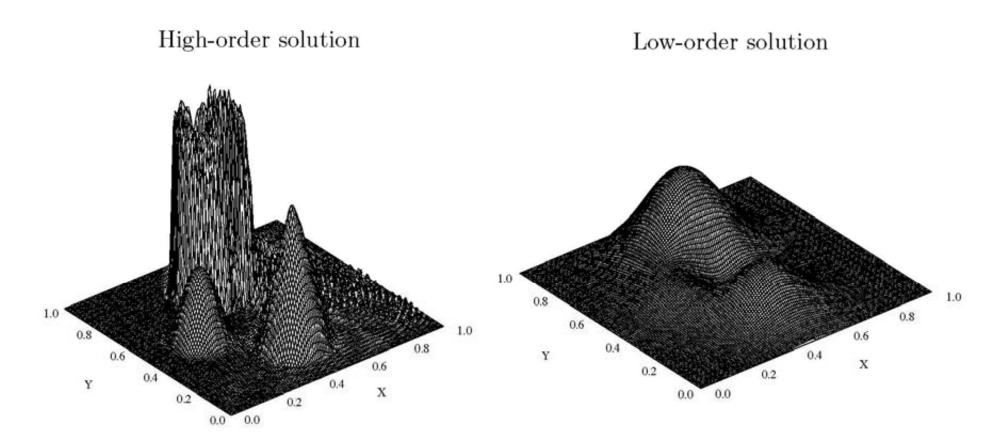
Exact solution / initial data

FEM-TVD / superbee limiter



Crank-Nicolson time-stepping $\Delta t = 10^{-3}$, 128×128 bilinear elements

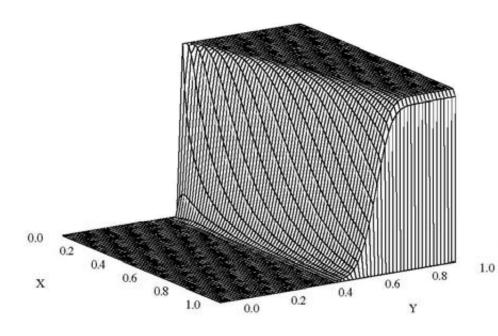
Example: solid body rotation



Crank-Nicolson time-stepping $\Delta t = 10^{-3}$, 128×128 bilinear elements

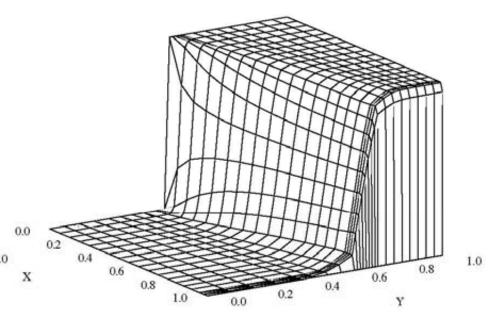
Example: steady-state convection-diffusion

Uniform structured mesh



 64×64 bilinear elements

Adaptive structured mesh

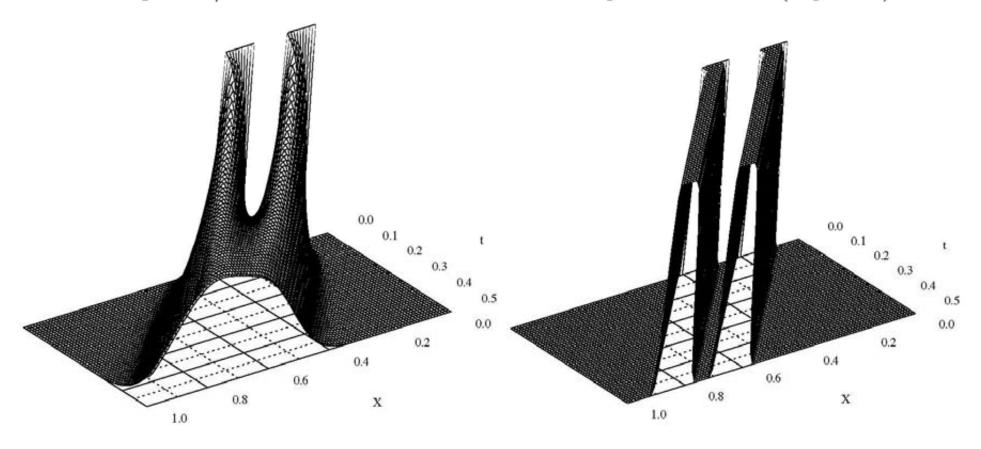


 20×24 bilinear elements

Backward Euler time-stepping $\mathbf{v} = (\cos 10^{\circ}, \sin 10^{\circ}), \ \epsilon = 10^{-3}, \ \Delta t = 1.0$

Example: scalar convection in space-time

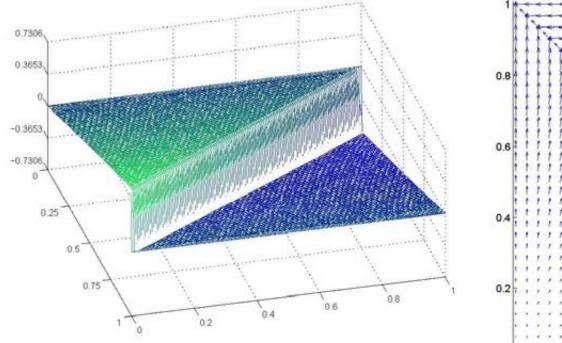
Space-time TVD (superbee)



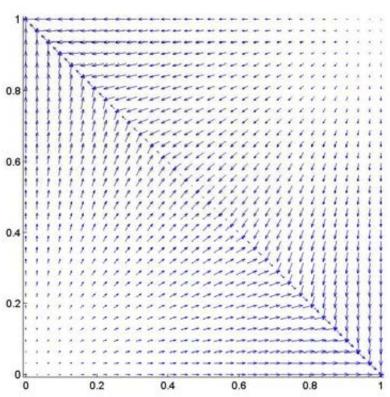
Uniform Cartesian mesh $\Delta x = \Delta t = 10^{-2}$, $\Omega = (0,1) \times (0,0.5)$

Example: two-dimensional Burgers equation

Initial data: $u(x, y, 0) = \sin(\pi x)\cos(\pi y), \quad v(x, y, 0) = \cos(\pi x)\sin(\pi y)$



FEM-TVD / MC limiter, u(x, y, 1)



Backward Euler time-stepping $\Delta t = 10^{-2}$, 128×128 bilinear elements

Compressible Euler equations

Divergence form
$$\frac{\partial U}{\partial t} + \nabla \cdot \mathbf{F} = 0$$
 where $\nabla \cdot \mathbf{F} = \sum_{d=1}^{3} \frac{\partial F^d}{\partial x_d}$

$$\nabla \cdot \mathbf{F} = \sum_{d=1}^{3} \frac{\partial F^d}{\partial x_d}$$

Conservative variables and fluxes

$$egin{aligned} U &= \left(
ho,
ho \mathbf{v},
ho E
ight)^T \ \mathbf{F} &= \left[egin{aligned}
ho \mathbf{v} \
ho \mathbf{v} \otimes \mathbf{v} + p \mathcal{I} \
ho \mathbf{F} &= \left(F^1, F^2, F^3
ight) \end{aligned}
ight] egin{aligned} F &= \left[egin{aligned}
ho \mathbf{v} \
ho \mathbf{v} \otimes \mathbf{v} + p \mathcal{I} \
ho H \mathbf{v} \end{aligned}
ight] & \gamma &= c_p/c_v \end{aligned}$$

Equation of state $p = (\gamma - 1)\rho \left(E - |\mathbf{v}|^2/2\right)$ for a polytropic gas

$$\frac{\partial U}{\partial t} + \mathbf{A} \cdot \nabla U = 0$$

Quasi-linear form
$$\frac{\partial U}{\partial t} + \mathbf{A} \cdot \nabla U = 0$$
 where $\mathbf{A} \cdot \nabla U = \sum_{d=1}^{3} A^d \frac{\partial U}{\partial x_d}$

Jacobian matrices $\mathbf{A} = (A^1, A^2, A^3)$

$$\mathbf{A} = (A^1, A^2, A^3)$$

$$F^d = A^d U, \qquad A^d = \frac{\partial F^d}{\partial U}, \qquad d = 1, 2, 3$$

Galerkin FEM for the Euler equations

Group FEM formulation

$$M_C \frac{\mathrm{d}U}{\mathrm{d}t} = KU \tag{KU}$$

$$M_C \frac{\mathrm{dU}}{\mathrm{dt}} = K_U$$
 $(K_U)_i = -\sum_{j \neq i} \mathbf{c}_{ij} \cdot (\mathbf{F}_j - \mathbf{F}_i)$

since the basis functions satisfy $\sum_{i} \varphi_{j} \equiv 1$ and thus $\mathbf{c}_{ii} = -\sum_{i \neq i} \mathbf{c}_{ij}$

Roe averaging $\mathbf{F}_j - \mathbf{F}_i = \hat{\mathbf{A}}_{ij}(\mathbf{U}_j - \mathbf{U}_i)$, where $\hat{\mathbf{A}}_{ij} = \mathbf{A}(\hat{\rho}_{ij}, \hat{\mathbf{v}}_{ij}, \hat{H}_{ij})$

$$\hat{\rho}_{ij} = \sqrt{\rho_i \rho_j}, \qquad \hat{\mathbf{v}}_{ij} = \frac{\sqrt{\rho_i \mathbf{v}_i + \sqrt{\rho_j} \mathbf{v}_j}}{\sqrt{\rho_i} + \sqrt{\rho_j}}, \qquad \hat{H}_{ij} = \frac{\sqrt{\rho_i H_i + \sqrt{\rho_j} H_j}}{\sqrt{\rho_i} + \sqrt{\rho_j}}$$

Quasi-linear Galerkin discretization

$$(K\mathbf{U})_i = -\sum_{j\neq i} \mathbf{c}_{ij} \cdot \hat{\mathbf{A}}_{ij} (\mathbf{U}_j - \mathbf{U}_i) = -\sum_{j\neq i} (\mathbf{A}_{ij} + \mathbf{B}_{ij}) (\mathbf{U}_j - \mathbf{U}_i)$$

Cumulative Roe matrices

Contribution of the edge ij

$$A_{ij} = \mathbf{a}_{ij} \cdot \hat{\mathbf{A}}_{ij}, \quad \mathbf{a}_{ij} = \frac{\mathbf{c}_{ij} - \mathbf{c}_{ji}}{2} \quad (A_{ij} + B_{ij})(\mathbf{U}_i - \mathbf{U}_j) \longrightarrow (K\mathbf{U})_i$$

$$\mathbf{b}_{ij} = \mathbf{b}_{ij} \cdot \hat{\mathbf{A}}_{ij}, \qquad \mathbf{b}_{ij} = \frac{\mathbf{c}_{ij} + \mathbf{c}_{ji}}{2}$$
 $(\mathbf{A}_{ij} - \mathbf{B}_{ij})(\mathbf{U}_i - \mathbf{U}_j) \longrightarrow (K\mathbf{U})_j$

Edge contribution to the operator K

$$K_{ii} = A_{ij} + B_{ij}$$
 $K_{ij} = -A_{ij} - B_{ij}$

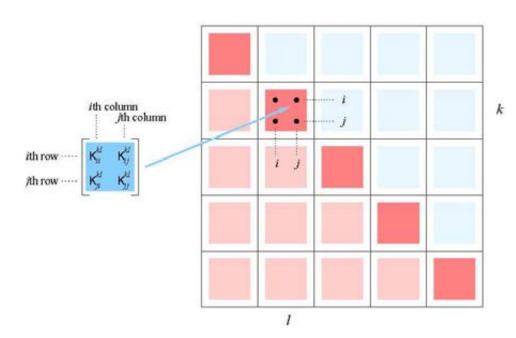
$$K_{ji} = A_{ij} - B_{ij}$$
 $K_{jj} = -A_{ij} + B_{ij}$

Edge contribution to the operator L

$$\mathbf{L}_{ii} = \mathbf{A}_{ij} - \mathbf{D}_{ij}$$
 $\mathbf{L}_{ij} = -\mathbf{A}_{ij} + \mathbf{D}_{ij}$

$$L_{ji} = A_{ij} + D_{ij}$$
 $L_{jj} = -A_{ij} - D_{ij}$

Structure of the global matrix



Raw antidiffusive flux for the edge $i\vec{j}$

$$F_{ij} = -\left(M_{ij}\frac{\mathrm{d}}{\mathrm{d}t} + D_{ij} + B_{ij}\right)(U_j - U_i), \qquad F_{ji} = -F_{ij} \qquad \text{(semi-discrete)}$$

where $M_{ij} = m_{ij}I$ and D_{ij} is a local tensor of artificial diffusion (to be defined)

Construction of artificial viscosities

Generalized LED principle for systems

Off-diagonal blocks of the global matrix should be positive semi-definite

Characteristic decomposition $A_{ij} = R_{ij}\Lambda_{ij}R_{ij}^{-1}$ $|\mathbf{a}_{ij}| = \sqrt{\mathbf{a}_{ij} \cdot \mathbf{a}_{ij}}$

$$\mathbf{A}_{ij} = \mathbf{R}_{ij} \mathbf{\Lambda}_{ij} \mathbf{R}_{ij}^{-1}$$

$$|\mathbf{a}_{ij}| = \sqrt{\mathbf{a}_{ij} \cdot \mathbf{a}_{ij}}$$

where $\Lambda_{ij} = |\mathbf{a}_{ij}| \operatorname{diag} \{\lambda_1, \dots, \lambda_5\}$ and R_{ij} is the matrix of eigenvectors

Eigenvalues
$$\lambda_1 = \hat{v}_{ij} - \hat{c}_{ij}$$
, $\lambda_2 = \lambda_3 = \lambda_4 = \hat{v}_{ij}$, $\lambda_5 = \hat{v}_{ij} + \hat{c}_{ij}$

Characteristic velocities
$$\hat{v}_{ij} = \frac{\mathbf{a}_{ij} \cdot \hat{\mathbf{v}}_{ij}}{|\mathbf{a}_{ij}|}, \quad \hat{c}_{ij} = \sqrt{(\gamma - 1) \left(\hat{H}_{ij} - \frac{|\hat{\mathbf{v}}_{ij}|^2}{2}\right)}$$

Generalization of Roe's Riemann solver

$$D_{ij} = |A_{ij}| = R_{ij} |\Lambda_{ij}| R_{ij}^{-1}$$
 or $D_{ij} = \sum_{d=1}^{3} |A_{ij}^d|$ (coordinate splitting)

Remark. Scalar artificial viscosity $D_{ij} = |\mathbf{a}_{ij}| \max_{i} |\lambda_{i}|$ is a cheaper alternative

Decoupling of the Euler equations

Iterative defect correction

$$U^{(m+1)} = U^{(m)} + [A(U^{(m)})]^{-1}R^{(m)}$$

$$A({\bf U}^{(m)})\Delta {\bf U}^{(m+1)}={\bf R}^{(m)}$$

 ${\bf U}^{(m+1)}={\bf U}^{(m)}+\Delta {\bf U}^{(m+1)}$

Linearized global system for the m-th iteration

$$\begin{bmatrix} A_{11}^{(m)} & A_{12}^{(m)} & A_{13}^{(m)} & A_{14}^{(m)} & A_{15}^{(m)} \\ A_{21}^{(m)} & A_{22}^{(m)} & A_{23}^{(m)} & A_{24}^{(m)} & A_{25}^{(m)} \\ A_{31}^{(m)} & A_{32}^{(m)} & A_{33}^{(m)} & A_{34}^{(m)} & A_{35}^{(m)} \\ A_{41}^{(m)} & A_{42}^{(m)} & A_{43}^{(m)} & A_{44}^{(m)} & A_{45}^{(m)} \\ A_{51}^{(m)} & A_{52}^{(m)} & A_{53}^{(m)} & A_{54}^{(m)} & A_{55}^{(m)} \end{bmatrix} \begin{bmatrix} \Delta_{\mathrm{U}_{1}^{(m+1)}} \\ \Delta_{\mathrm{U}_{2}^{(m+1)}} \\ \Delta_{\mathrm{U}_{2}^{(m+1)}} \\ \Delta_{\mathrm{U}_{3}^{(m+1)}} \\ \Delta_{\mathrm{U}_{4}^{(m+1)}} \\ \Delta_{\mathrm{U}_{5}^{(m)}} \end{bmatrix} = \begin{bmatrix} \mathrm{R}_{1}^{(m)} \\ \mathrm{R}_{2}^{(m)} \\ \mathrm{R}_{3}^{(m)} \\ \mathrm{R}_{4}^{(m)} \\ \mathrm{R}_{5}^{(m)} \end{bmatrix}$$

Block-diagonal preconditioner $A_{kk}^{(m)} = M_{kk} - \theta \Delta t L_{kk}^{(m)}$, $A_{kl}^{(m)} = 0$, $\forall l \neq k$ is employed to save memory; equations can be solved separately or in parallel

Segregated FEM-TVD algorithm

Sequence of scalar subproblems

$$A_{kk}^{(m)} \Delta U_k^{(m+1)} = R_k^{(m)}, \qquad k = 1, \dots, 5$$

$$\mathbf{U}_{k}^{(m+1)} = \mathbf{U}_{k}^{(m)} + \Delta \mathbf{U}_{k}^{(m+1)}, \quad \mathbf{U}_{k}^{(0)} = \mathbf{U}_{k}^{n}$$

Characteristic TVD limiter

$$\mathbf{F}^a_{ij} = \mathbf{R}_{ij} |\Lambda_{ij}| \Delta \hat{\mathbf{W}}_{ij}$$

$$\Delta \hat{\mathbf{W}}_{ij} = \Phi_{ij} \mathbf{R}_{ij}^{-1} (\mathbf{U}_i - \mathbf{U}_j)$$

Implementation of characteristic boundary conditions

Algebraic manipulations for $\mathbf{x}_i \in \Gamma$

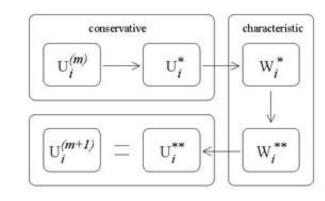
1. Prediction of $U_i = [u_{1,i}, \dots, u_{5,i}]^T$

$$a_{ij}^{kk} := 0$$
 $u_{k,i}^* = u_{k,i}^{(m)} + r_{k,i}^{(m)} / a_{ii}^{kk}$ $r_{k,i}^{(m)} := 0$

$$r_{k,i}^{(m)} := 0$$

2. Correction of $\mathbf{W}_i = [w_{1,i}, \dots, w_{5,i}]^T$

Variable transformations

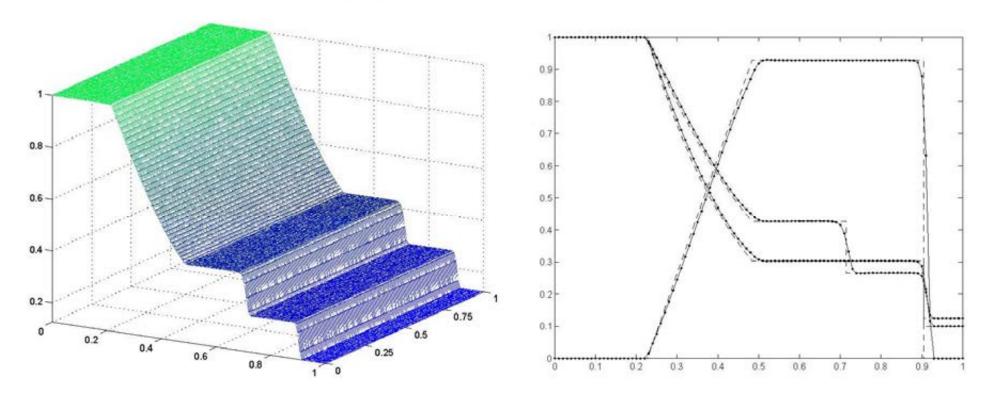


- transform U_i^* into W_i^* and prescribe the incoming Riemann invariants
- convert the resulting vector \mathbf{W}_{i}^{**} back to the conservative variables \mathbf{U}_{i}^{**}

Example: Sod's shock tube problem

Density distribution (2D)

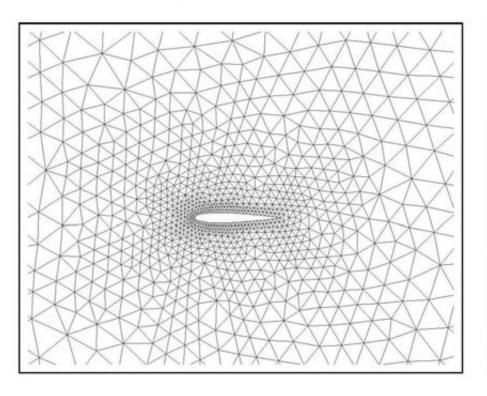
FEM-TVD solution at t = 0.231



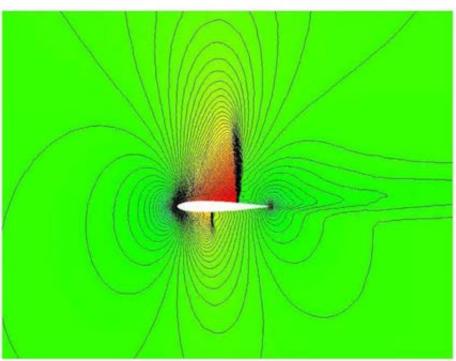
Crank-Nicolson time-stepping $\Delta t = 10^{-3}$, 128×128 bilinear elements

Example: Transonic flow past a NACA 0012 airfoil

Triangular coarse mesh



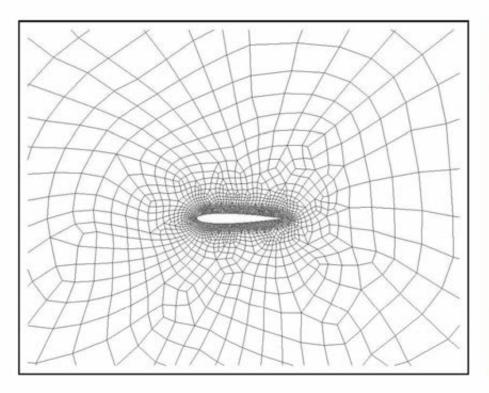
Mach number isolines



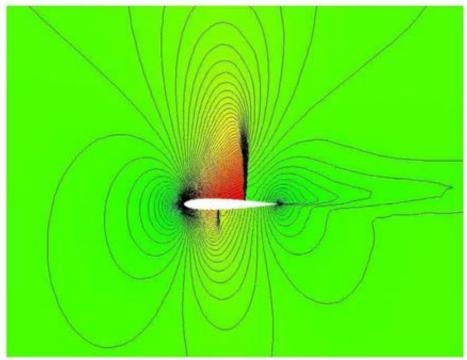
Characteristic FEM-TVD method, MC limiter, $M_{\infty} = 0.8$, $\alpha = 1.25^{\circ}$

Example: Transonic flow past a NACA 0012 airfoil

Quadrilateral coarse mesh



Mach number isolines



Characteristic FEM-TVD method, MC limiter, $M_{\infty} = 0.8$, $\alpha = 1.25^{\circ}$

The algebraic approach to the design of high-resolution schemes

- deals with matrices and their sparsity pattern
- is applicable to arbitrary discrete operators
 - finite elements/differences/volumes
 - nonuniform and unstructured meshes
 - explicit and implicit time-stepping
 - coupled space-time discretizations
- leads to a node-oriented flux limiter of TVD type which is readily portable to multidimensions
- reduces to Harten's TVD schemes in the 1D case
- is very simple to implement and to incorporate into existing CFD codes as a 'black-box' module

