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1 Introduction 

Gravity-driven flows of highly concentrated mixtures of granular material and water are involved in a wide variety of 
geophysical processes. Among them, natural flows such as debris flows, snow avalanches and submarine landslides 
have caused serious disasters worldwide. As compared to the relatively abundant studies of dry granular flows, study of 
granular-water mixture flows is more challenging due to the complex interactions between granular particles and the 
ambient water. The existence of ambient water has a great effect on the dynamic characteristics of dense granular flows. 

This paper presents a comprehensive two-dimensional two-phase model for inclined flows of saturated granular 
and water mixtures over erodible and rigid beds (see Figure 1). The model is based on a general collisional-frictional 
law for the granular stresses. The buoyancy and drag force are considered to represent the two-phase interactions. The 
effects of sidewall and bottom wall are also taken into account in this model.  

The present numerical model is developed via OpenFOAM® based on the solver called twoPhaseEulerFoam. The 
two-phase model is further applied to simulate the laboratory experiments of fully-developed granular-water mixture 
flows over an inclined erodible and a rigid bed. The good agreements with the measured distribution of the 
concentration, velocity and granular temperature confirm the capability of the model to capture the dynamic features of 
saturated granular-water mixture flows under different regimes. 

  
Figure 1: Sketches of saturated granular-water inclined flows over erodible (left panel) or rigid bed (right panel). 
 
2 Model formulation 

In an Eulerian-Eulerian two-phase model, the granular phase and the fluid phase are described as two interpenetrating 
continuums. The phase-averaged basic equations can thus be derived from an average of the mass and momentum 
conservation laws for the granular material and the fluid over a control volume. To consider the effects of the sidewall, 
through further averaging along transversal direction, the governing equations for the fluid and granular phase can be 
written as  
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where, the subscripts f  and s  denote quantities of fluid and granular phases, respectively; the subscripts , ,1 2i j =  

denote streamwise and vertical directions. a  is the volume fraction and satisfies 1s fa a+ = ; U  is the velocity and r  

is the material density of the relevant phase; p  is the pressure and t  is the deviatoric stress; F  represents the granular-

fluid interactive force; g  is the gravitational acceleration; W  is the width of channel and wm  is the frictional 

coefficient between granular material and the channel sidewall. 
The interaction term iF  in Eqs. (3) and (4) governs the momentum exchange between the fluid and granular phases. 

In dense granular problems, the lift and virtual-mass forces are insignificant when compared to the drag force. Thus, we 
consider only drag force in iF , as 

 ( ), ,i f i s iF K U U= -   (5) 

where K  is a generalized drag coefficient. Considering the particle group effect, the Gidaspow’s (1994) formula is 
employed  
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where sd  is the particle diameter and the drag coefficient DC  is given by 
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in which, Res f f s s fdr m= -U U  is the particle Reynolds number and fm  is the viscosity of the fluid. 

Ignoring the fluid turbulence for dense granular problems, the shear stress of the fluid phase can be expressed as  
 , ,S2f ij f f f ijt a m=   (8) 

with ( ) ( ), , , ,S 1 2 1 3f ij f i j f j i f k k ijU x U x U x d= ¶ ¶ +¶ ¶ - ¶ ¶  being the tensor of the deviatoric rate of fluid strain.  

Flows of granular material generally cover two contrasting regimes: the rapid regime in which intense collisions 
occur among granular particles, and the quasi-static regime when enduring inter-particle contacts are predominant. To 
accurately describe the granular stresses in various regimes, a general collisional-frictional law is adopted, including a 
rate-dependent collisional part and a rate-independent frictional part 

 , , ,,      c f c f
s s s s ij s ij s ijp p p t t t= + = +   (9) 

where the superscripts c  and f  represent the collisional and frictional components of the granular stress, respectively. 
The collisional pressure can be formulated by the kinetic theory of Lun et al. [1], 

 ( )1 4c
s s s sp Ra r ha= Q +   (10) 

where, Q  is so-called granular temperature, representing the kinetic energy of the granular material due to velocity 

fluctuations; ( ) ( )32 2 1s sR a a= - -é ù
ê úë û  is the particle radial distribution function; ( )1 2eh= +  with e  is the restitution 

coefficient of particle collisions, defined as 
 . -0.52 85Stde e= -   (11) 

which has proved effective for various types of granular material. de  is the restitution coefficient of dry granular 

particles, which is often suggested to be 0.9 for glass beads. The Stokes number adopted here is a function of the 

granular temperature: ( ).0 5St 18s s fdr m= Q . 

The governing equation for the granular temperature Q , taking into account the effect of the fluid phase [2], can 
be written as  
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where, the first term on the right side represents the diffusion of fluctuating energy with sk  being a diffusion coefficient; 

the second term is the production of fluctuating energy due to shear in the granular material; sJ  is the energy 

dissipation due to inelastic particle collisions; and G  represents the production or dissipation due to interaction between 
the granular particles and the fluid. Based on the kinetic theory of Lun et al. [1] and Gidaspow [2], 
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Following Lun et al. [1], the collisional shear stress for granular material can be written as  
 , ,2c c

s ij s s ijSt m=   (15) 

with ( ) ( ), , , ,S 1 2 1 3s ij s i j s j i s k k ijU x U x U x d= ¶ ¶ +¶ ¶ - ¶ ¶  being the tensor of the deviatoric rate of granular strain. 

The granular viscosity c
sm  can be determined as 
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Frictional stress develops when contacts between granular particles become long-lasting and form a granular 
skeleton. For cohesionless granular material, the frictional stress may be generally expressed as 

 , ,S2f f
s ij s s ijt m=   (17) 

where f
sm  is the viscosity due to inter-particle friction, formulated as   
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in which, f
sp  is the frictional normal stress; , ,

ˆ 2 s ij s ijS S S= ; and f  is the internal friction angle of the granular 

material. f
sp  is evaluated using an empirical relation 
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where maxa  is the close-packed volume fraction and mina  is the loose-packed volume fraction. The frictional pressure 

vanishes when the volume fraction sa  is less than mina . The values of maxa  and mina  depend on the arrangement 

pattern and size distribution of the granular particles. h , 1g  and 2g  are empirical constants.  

 
3 Validation and results  

Saturated granular-water inclined flows over an inclined erodible and a rigid bed [3, 4], as ideal configurations of fully 
developed debris flows, are tested and performed in this work. The slope inclination, granular properties and other 
parameters used in our model are summarized in Table 1. To obtain a steady uniform flow condition observed in 
experiments, periodic boundaries are used for the left and right boundaries of the computation domain (see Figure 1). A 
non-slip boundary condition is applied on the bottom for the erodible bed case, due to the presence of a static layer 
beneath the flow layer. However, for the rigid bed case, intense collisions occur between the granular particles and the 
bottom wall. To describe the collisional mechanism near the wall, a collisional boundary condition is employed 
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Here, y  is the roughness of the wall; we  is the restitution coefficient between granular particles and the wall; 
( ),1 2n n=n  is the unit normal vector of the wall. 
Figure 2 shows the comparisons between the numerical results and the experimental data, in terms of the 

concentration, velocity and granular temperature distributions. The distribution profiles appear a significant difference 
between erodible and rigid bed cases. For saturated granular-water flows over an erodible bed, the granular 
concentration decreases monotonically over depth, with maximum values close to the packed bed. The velocity profile 
is convex, with maximum gradients close to the free surface. The granular temperature, i.e., the fluctuation energy of 
the granular phase, remains nearly zero close to the bed and increases linearly over depth, reaching its maximum at the 
free surface. In the case of the granular-water flows over a rigid bed, the distribution profiles become quite different. 
The granular concentration is minimum at the bed, reaches a maximum towards the centre and reduces again near the 
free surface. The velocity profile is slightly concave, with its steepest gradients near the bed. The granular temperature 
is maximum near the bed and decreases towards the free surface, presenting a contrary variation compared to the 
counterpart in the erodible bed case. The overall agreements between the numerical results and experiments 
demonstrate the capability of our model to simulate the gravity-driven granular-water mixture flows. 
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Table1: Parameters for numerical simulations 

Parameter Erodible bed Rigid bed Parameter Erodible bed Rigid bed 

q  8° 22° maxa  0.7 0.7 

h  62 mm 31 mm mina  0.5 0.5 

sr  2210 kg/m3 1540 kg/m3 h 4×10-4 4×10-4 

fr  1000 kg/m3 1000 kg/m3 1g  2 2 

sd  6 mm 3.7 mm 2g  5 5 

de  0.9 0.9 wm  0.4 0.4 
f  20° 35° y  -- 0.9 

0a  0.56 0.545 we  -- 0.7 

 

Figure 2: Depth profiles of concentration, velocity and granular temperature of the granular phase over erodible (top panel) 
and rigid bed (bottom panel).  
 
4 Conclusions  

An Eulerian-Eulerian two-phase model based on a general formulation of the granular stress is developed for granular-
water mixture flows. In the model, the kinetic theory is extended to consider the influences of the ambient fluid and 
employed to compute the collisional stress in the granular phase. For the frictional stress, an improved formula derived 
by statistically averaging the individual contact forces among cohesionless particles is employed. The proposed two-
phase model is successfully applied to the saturated granular-water inclined flows over both erodible and rigid bed. The 
various distribution profiles of granular concentration, velocity and granular temperature are well captured by the model. 
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