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The flamelet/progress variable (FPV) approach was proposed as a model for non-premixed turbulent combustion and 

gave encouraging simulation results in several combustion environments [1, 2]. In present study, it was employed to 

model combustion process inside n-heptane fueling conventional compression ignition engine. The flamelet database was 

constructed on the basis of counter-flow flame configuration using published n-heptane mechanism [3]. The flame 

equations were solved by FlameMaster [4] in space of mixture fraction defined by Bilger [5] as follows: 
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where 𝑌𝑖 and 𝑀𝑖  were correspondingly mass fraction and molar mass of elements carbon (C), hydrogen (H) and

oxygen (O); and subscripts 1 and 2 respectively referred to mass fraction in fuel stream and oxidizer stream. Figure 

1 presents temperature profiles in mixture fraction space obtained from flame solutions. The black lines representing 

fully burning illustrate that maximum temperature of fully burning flame increases as scalar dissipation rate 

decreasing, while blue lines describe unstable burning and mixing. 
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Figure 1: Temperature profile in mixture fraction space 

In FPV approach, the flame solutions should be transferred to mixture fraction and progress variable spaces. The 

following definition of progress variable was used: 

𝑌𝑐 = 𝑌𝐻2𝑂 + 𝑌𝐶𝑂2 + 𝑌𝐻2 + 𝑌𝐶𝑂 (2) 

where 𝑌𝑖  was the mass fraction of species. In order to simplify table look-up procedure, C =
𝑌𝑐−𝑌𝑐

𝑢
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introduced as a scaled progress variable to normalize 𝑌𝑐 . The laminar flame solutions were integrated with

presumed probability density functions (PDF) to incorporate turbulence-chemistry interaction. For mixture fraction 

and progress variable, β-PDF and δ-PDF were applied, respectively. The average or filtered quantities were defined 

as: 
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Besides, the table solution of FPV approach was set to �̃� × 𝑍"
2̃
× �̃� = 101 × 41 × 101.

The simulations in present work were carried out on basis of open source CFD package-OpenFOAM [6]. Reynolds 

Averaged Navier-Strokes (RANS) based k-ε model was used for three-dimensional (3-D) turbulent simulation and the 

Reitz-Diwakar model was chosen to mimic spray atomization and droplet break up. New libraries were created for FPV 

tabulated approach in framework of OpenFOAM. New solver referred as “sprayEngineFPVFoam” was developed to 

model diesel engine. The following additional transport equations were added: 
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where mean progress variable source term due to reaction was tabulated and mixture fraction source term ((�̃�𝑍 =

−
1

𝑉𝑐
∑ �̇�𝑝𝑁𝑝𝑝 ) introduced by liquid fuel evaporation was modeled referred to Baba et al. [7].

To investigate the capability of FPV approach, general computed combustion characteristics were compared and validated 

with experiments conducted by authors on a single-cylinder direct-injection and naturally aspirated diesel engine. Figure 

2 presents comparison between experimental and calculated in-cylinder pressure trace. It demonstrates that FPV approach 

can well reproduce the pressure history of engine operating under different conditions. Besides, influence of injection 

pressure on in-cylinder pressure trend is also precisely predicted. Specifically, peak pressure goes higher as injection 

pressure increasing.   

Figure 2: In-cylinder pressure trace 

In Figure 3, comparisons of engine ignition delay are shown for all operation loads with injection pressure maintained at 

50MPa and 60MPa, respectively. Although negligible ignition delay variations resulted from fixed injection timing, 

agreement between simulated and measured results is good, which proves the capability of FPV approach to predict the 

onset of combustion. 

Figure 3: Ignition delay versus IMEP with injection pressure fixed at (a) 50MPa and (b) 60MPa 

Figure 4 displays the distribution of progress variable reaction rates in space of scalar dissipation rate approaching ignition. 
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As time propagating towards ignition, progress variable reaction rate is intensified. In addition, it can also be observed 

from blue scatters on behalf of the onset of combustion, the ignition occurs in the region with extremely low scalar 

dissipation rate. 

Figure 4: Distribution of progress variable reaction rates with scalar dissipation rates before ignition 
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