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Abstract: Jet impingement heat transfer has been applied in many industry fields due to its high heat and mass transfer 

rate. A numerical simulation about the turbulent slot steady jets has been carried out using the modified SST- k-ω model 

based on OpenFOAM. The cases studied are of nozzle-plate spacing of 4 and 9.2, respectively, and the Reynolds 

number is 20,000. The modified SST k-ω turbulence model is constructed based on the Kato-Launder mode. To test the 

modified SST k-ω model’s validation for jet impingement, the velocity profiles, skin friction and Nusselt number 

distribution are investigated in detail. By comparing with both experimental data and other numerical results, the good 

agreement between the present model and the experimental data has indicated the model's ability for predicting the 

transition in slot impinging jets.   

1 Introduction 

The SST k-ω model proposed by Menter [1] which blends the standard k-ε model and k-ω model is very popular in 

many applications. However, the complex impinging jet flows are also challenges for various turbulence models, due to 

the complex phenomena including the vortex developing, separation and high adverse pressure gradient [2, 3]. For a 

typical impinging jet, there are a dip and second peak of the Nusselt number along the impinging plane at low 

nozzle-plate spacing (H/B ≤ 4), which disappear at high nozzle-plate spacing. This phenomenon is affected by the 

laminar to turbulence transition [2]. Thus, the turbulence models with the ability of predicting the transition have been 

carried out to investigate the jet impingement problems in recent years [3-5]. Based on earlier studies, the SST k-ω 

model has been recommended due to its appropriate performances [6]. And the SST k-ω model has been used in many 

studies, which shows good performances in jet impingements [7-10]. However, the SST k-ω model predicted the second 

peak and dip of Nusselt number earlier than the experiment and provided a false secondary peak of the Nusselt number 

at high nozzle-plate spacing [3, 11]. These findings imply that there is not a single turbulence model which shows best 

for different conditions, which leads to the importance of studying the new modifications using the same framework to 

assess their relative performances.  

The work of this paper modifies the SST k-ω model based on the Kato-Launder model to the available reference data [3, 

12-14] for different nozzle-plate spacing of 4 and 9.2. The Kato-Launder modification has been succeeded in improving 

the flow structures not only in the stagnation region but also in the wall jet region [15]. Various comparisons against the 

experimental data and numerical results in terms of velocity profiles, skin friction and Nusselt number distribution are 

presented in this work.  

Section 2 describes the modified work for SST k-ω model. Section 3 shows the results of the velocity profiles, skin 

friction and Nusselt Number distribution. Section 4 presents the conclusions draw from the present study. 

2 The modified SST k-ω model 

The modifications based on the Kato-Launder model are carried out using the open software OpenFOAM platform to 

ensure the codes’ accuracy and robustness. The eddy viscosity for modified SST k-ω model is defined as: 
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where a1 is 0.31, b1 is 1.0, k is the turbulent kinetic energy, ω is the specific dissipation rate, S is the strain rate and F2 is 

the blending function. 

The equation k and ω are modified as following: 
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3 Results and discussion 

3.1 The velocity profiles 
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Figure 1. The comparison of velocity profiles against the experimental data and numerical results for H/B = 4 

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

U
/V

in

y/B

 Ashforth-Frost et al. [12]

 Zhe and Modi [13]

 RANS/LES M2 5.4M [14]

Modified SST k-

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

U
/V

in

y/B

 Ashforth-Frost et al. [12]

 Zhe and Modi [13]

 RANS/LES M1 1.6M [14]

Modified SST k-

(a) x/B = 1 (b) x/B = 5 

Figure 2. The comparison of velocity profiles against the experimental data and numerical results for H/B = 9.2 

3.2 The skin friction 
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(a) H/B = 4 (b) H/B = 9.2 

Figure 3. The comparison of skin friction against the experimental data and numerical results 

3.3 The Nusselt Number distribution 
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Figure 2. The comparison of Nusselt Number against the experimental data and numerical results 

4 Conclusions 

The modified SST k-ω model has been assessed in this work for turbulent slot impinging jet with two different 

nozzle-plate spacing of 4 and 9.2. The results are compared with the standard SST k-ω model, the RANS/LES model 

and the experimental data in terms of fluid structures including the velocity profiles, skin friction and Nusselt number 

distribution. It is observed that the modified SST k-ω model improves the ability of predicting the transition process and 

overcomes the false secondary peak of the Nusselt number at high nozzle-plate spacing (H/B = 9.2) which is predicted 

by the standard SST k-ω model. In general, the modified SST k-ω model provides fair performances using low 

computational resources comparing with the RANS/LES model. 
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