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Immersed boundary method was first proposed by Peskin

[1,2]
 for the simulation of human heart. The method was later 

extended to many fields
[3,4]

. By using cartesian grids, the immersed boundary method has some advantages in the 

simulation of complex boundary and moving boundary problems. In this paper, the method employs a discrete force 

approach which uses two polynomial interpolation combined with weighted least squares method
[5,6]

 for the 

reconstruction of the flow variables. Space domain was discretized using the finite volume method and time was 

discretized using Euler method. PISO algorithm was utilized for the couple of velocity and pressure field. Simulations 

of flow around a two-dimensional cylinder, an oscillating cylinder, a three-dimensional sphere and a two-dimensional 

fish were conducted to verify the accuracy and fidelity of the solver over low and medium Reynolds numbers covering 

static and dynamic boundary problems. It can establish foundations for the future handling of more complex problems 

in the field of naval and bionic hydrodynamics. Results show that those simulations have a high fit degree with relevant 

references.  

Flow around a cylinder 

Simulations of flow around a two-dimension cylinder were conducted and compared with the result of  Chiu
[7]

 and 

Xu
[8]

.The Reynolds numbers are 100 and 200 respectively, and the characteristic length is defined as the radius of  the 

cylinder, d. The computational domain is 50× 25 d. 

a                                                                             b 

Figure 1: The evolution of drag and lift coefficient at (a): Re =100, (b): Re=200 

a                                                                                       b 

Figure 2: Vortical structures of flow over a cylinder at (a): Re =100, (b): Re=200 
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Table 1: Comparation of present results and literature results 

 Re Cd 

Current 100 1.38 

 200 1.39 

Chiu
[7]

 100 1.35 

 200 1.37 

Xu S
[8]

 100 1.42 

 200 1.42 

 

Flow over an oscillating cylinder 

Simulations of an oscillating cylinder were computed under the Re = 185. The amplitude (Ae) was 0.2d , and the 

oscillation frequency (fe) are 1f0, 1.2f0, where f0 is the vortex shedding frequency. The computational domain was the 

same as the flow around the stational cylinder. 

 
a                                                                            b 

Figure 3: Vortical structures of flow over an oscillating cylinder. (a): fe/f0=1, (b): fe/f0=1.2 

 
Flow over a 3D sphere 

The 3D sphere simulations were conducted under the condition of Re = 100 and 300. The computational domain was 

33d×16d×16d(d is the diameter of the sphere) .  

 
a                                                                             b 

Figure 5: Vortical structures of flow over a 3D sphere. (a): Re=100, (b): Re=300 

 

Table 2: Comparation of drag coefficient 

 Re Cd 

Current 100 1.071 

 300 0.692 

JungwooKim
[9]

 100 1.087 

 300 0.657 

Fornberg
[10]

 100 1.085 

Constantinescu
[11]

 300 0.655 

Simulation of undulatory swimming  

The fish body is represented by a NACA 0012 foil, the following motion is selected to resemble the fish-swimming 

motion observed in nature. The movement equation
[12]

 is described as: 

 

                  
 

 
 

 

 
                                   

a b 

Figure 4: The evolution of drag and lift coefficient for the cylinder oscillation. (a): fe/f0=1, (b): 

fe/f0=1.2 
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whrerλ is the wavelength, L is the body length,  and the Strouhal number is defined by  

   
  

 
                                               (3)                                             

The simulations were carried out under the condition of Re=45000, St = 0.23 , 1.18. 
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Figure 6: Vortical structures of the fish-like movement. (a):St=0.23, (b):St=1.18 
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