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Iterative method

 Direct methods are generally not appropriate for solving 
large systems of equations particularly when the coefficient 
matrix is sparse

 In contrast, iterative methods are more appealing for these 
problems since the solution of the linearized system 
becomes part of the iterative solution process. Add to that 
the low computer storage and low computational cost 
requirements of this approach relative to the direct method

 A brief examination of basic iterative methods is provided 
along with an appraisal of multigrid algorithms that are 
generally used to address their deficiency
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To unify the presentation of these methods, the coefficient matrix 
will be written in the following form 

where 𝐷, 𝐿, and 𝑈 refers to a diagonal, strictly lower, and strictly 
upper matrix, respectively 

Iterative methods for solving a linear system of the type 𝐴𝜙 = 𝑏, 
compute a series of solutions 𝜙𝑛 that, if certain conditions are 
satisfied, converge to the exact solution 𝜙
 𝜙0is selected as the initial condition or initial guess) and an 

iterative procedure that computes 𝜙𝑛 from the previously 
computed 𝜙𝑛−1 field is developed 

Jacobi Method
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 Considering the system of equations, solution process starts 
by assigning guessed values to the unknown vector 𝜙 . These 
guessed values are used to calculate new estimates starting 
with 𝜙1, then 𝜙2, and computations proceed until a new 
estimate for 𝜙𝑁 is computed. This represents one iteration. 
Results obtained are treated as a new guess for the next 
iteration and the solution process is repeated

 Iterations continue until the changes in the predictions 
between two consecutive iterations drop below a vanishing 
value or until a preset convergence criterion is satisfied. Once 
this happens the final solution is reached
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Equation indicates that values obtained during an iteration are 
not used in the subsequent calculations during the same iteration 
but rather retained for the next iteration
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Solving for 𝜙𝑁, Eq. yields 
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Gauss-Seidel Method
A more popular take on the Jacobi is the Gauss-Seidel method, 
which has better convergence characteristics. It is somewhat less 
expensive memory-wise since it does not require storing the new 
estimates in a separate array. Rather, it uses the latest available 
estimate of 𝜙 in its calculations. The iterative formula in the 
Gauss Seidel method is given as 

Matrix form is written as 
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 Gauss-Seidel method uses the most recent values in its 

iteration, specifically all 𝜙𝑗
(𝑛)

values for 𝑗 < 𝑖 since by the time 𝜙𝑖

is to be calculated, the values of 𝜙1, 𝜙2, 𝜙3 ,… 𝜙𝑖−1 at the current 
iteration are already calculated

 This approach also saves memory since the newer value is 
always overwriting the previous one 
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Example

Apply 5 iterations of the Gauss-Seidel and Jacobi methods to the 
system of equations in last Example and compute the errors at 
each iteration using the exact solution 

As an initial guess start with the field 𝜙 = [0 0 0 0]
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Denoting with a superscript (*) values from the previous 
iteration, the equations to be solved in the Jacobi method are as 
follows 
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with the error given as 

The solution for the first iteration is obtained as 

Computations proceed in the same manner with solution obtained 
treated as the new guess
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The results for the first five iterations are given in Table

Denoting with a superscript (*) values from the previous 
iteration, the equations to be solved in the Gauss-Seidel method 
are as follows: 
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The solution for the first iteration is obtained as 
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The results for the first five iterations are given in Table (Jacobi)

The results for the first five iterations are given in Table (G-S)
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Preconditioning and Iterative Methods
A “fixed-point” iteration can always be associated to the above 
system by decomposing matrix A as 

Using this decomposition, AΦ=b is rewritten as

Applying a fixed point iteration solution procedure, Eq. becomes 

which can be rewritten in the following form

Different choices of these matrices define different iterative 
methods 
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 The rate of convergence of iterative methods depends on the 
spectral properties of the iteration matrix B

 Based on that an iterative method looks for a transformation of 
the system of equations into an equivalent one that has the 
same solution, but of better spectral properties

 Under these conditions the eigenvalues of the equivalent 
system are more clustered allowing the iterative solution to be 
obtained faster than with the original system. 

A preconditioner is defined as a matrix that effects such a 
transformation



NA26018 Finite Element Analysis of  Solids and Fluids 

Iterative method

A preconditioning matrix P is defined such that the system 

AΦ=b

has the same solution as the original system A𝜙 = 𝑏, but the 
spectral properties of its coefficient matrix P-1A are more
conducive, recall

With 𝐌 = 𝐏 and 𝐀 = 𝐏 − 𝐍
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in residual form can be written as 

By comparison, the preconditioning matrix for the Jacobi and 
Gauss-Seidel methods are simply 

Jacobi:

G-S:

where D and L are respectively the 
diagonal and lower triangular part 
of matrix A 
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 Preconditioning is a manipulation of the original system to 
improve its spectral properties with the preconditioning 
matrix P used in the associated iterative procedure

 It is possible to develop more advanced preconditioning 
matrices in which the coefficients are defined in a more 
complex way

 The low rate of convergence of the Gauss-Seidel and Jacobi 
methods was the prime motivator for the development of 
faster iterative techniques. One approach to accelerate the 
convergence rate of solvers and to develop iterative methods 
is through the use of more advanced preconditioners
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A simple, efficient, approach for that purpose is to perform an 
incomplete factorization of the original matrix of coefficients 𝐴

 The stress on incomplete is essential since a complete 
factorization of 𝐴 into a lower 𝐿 and an upper triangular matrix 
𝑈 is equivalent to a direct solution and is very expensive in 
term of memory requirements (fill in and loss of sparsity) and 
computational cost

 Many variants of the ILU factorization technique exist and the 
simplest is the one denoted by ILU(0). In ILU(0) the pattern of 
zero elements in the combined 𝐿 and 𝑈 matrices is taken to be 
precisely the pattern of zero elements in the original matrix 𝐴

Incomplete LU Factorization with no Fill-in ILU(0) 
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 Using Gaussian elimination, computations are performed as in 
the case of a full LU factorization, but any new nonzero 
element arising in the process is dropped if it appears at a 
location where a zero element exists in the original matrix 𝐴

 Hence, the combined 𝐿 and 𝑈 matrices have together the same 
number of non zeros as the original matrix 𝐴

 In the process however, the accuracy is reduced thereby 
increasing the number of required iterations for convergence to 
be reached

 To remedy this shortcoming, more accurate ILU factorization 
methods, which are often more efficient and more reliable, 
have been developed. These methods, differing by the level of 
fill-in allowed, are denoted by ILU(p), where p represents the 
order of fill-ins. The higher the level of fill-ins, the more 
expensive the ILU decomposition step becomes

Iterative method
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An ILU(0) factorization algorithm which assumes 𝐿 to be a unit 
lower triangular matrix and for which the same matrix 𝐴 is used 
to store the elements of the unit lower and upper triangular 
matrices 𝐿 and 𝑈 is as given next 

ILU(0) Factorization Algorithm: 

Iterative method
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ILU Factorization Preconditioners
A very popular class of preconditioners is based on incomplete 
factorizations. In the discussions of direct methods it was shown 
that decomposing a sparse matrix A into the product of a lower 
and an upper triangular matrices may lead to substantial fill-in

 Because a preconditioner is only required to be an 
approximation to A−1, it is sufficient to look for an approximate 
decomposition of A such that A ≈  L U. Choosing P =  L U leads also 
to an efficient evaluation of the inverse of the preconditioned 
matrix P−1, since the inversion can easily be performed by the 
forward and backward substitution, as described above, in 
which the exact L and U are now replaced by the 
approximations  L and  U, respectively 
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For the ILU(0) method, the incomplete factorization mimics the 
nonzero elements sparsity of the original matrix such that the 
pre-conditioner has exactly the size of the original matrix

 In order to reduce the storage needed, Pommerell introduced a 
simplified version of the ILU called diagonal ILU (DILU). In the 
DILU the fill-in of the off-diagonal elements is eliminated (i.e., 
the upper and lower parts of the matrix are kept unchanged) 
and only the diagonal elements are modified 

where 𝐿 and 𝑈 are the lower and upper triangular decomposition 
of 𝐴, and 𝐷 ∗ is now a proper diagonal matrix, different from the 
diagonal of 𝐴. The 𝐷 ∗ matrix is thus defined, as shown below, in a 
way that the diagonal of the product of the matrices in Eq. equals 
the diagonal of 𝐴
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Algorithm for the Calculation 
of 𝐷 ∗ in the DILU Method: 
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Forward and Backward Solution 
Algorithm with the DILU Method: 
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The Multigrid Approach
A severe limitation for iterative solvers:

The rate of convergence of iterative methods drastically 
deteriorates as the size of the algebraic system increases, with 
the drop in convergence rate even observed in medium to large 
systems after the initial errors have been eliminated

It was found that the combination of multigrid and iterative 
methods can practically remedy this weakness

 Multigrid methods started with the work of Fedorenko
(Geometric Multigrid), Poussin (Algebraic Multigrid), and 
Settari and Azziz, and gained more interest with the theoretical 
work of Brandt
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 In Multigrid solver, high-frequency or oscillatory errors are 
easily eliminated with standard iterative solvers (Jacobi, 
Gauss-Seidel, ILU), these solution techniques cannot easily 
remove the smooth or low frequency error components

Schematic of different error modes in a one dimensional grid

 The one dimensional domain is 
discretized using the one 
dimensional grid shown and the 
various modes are separately 
plotted over the same grid

 The error modes shown in Fig. vary 
from high frequency of short 
wavelength λ1 to low frequency of 
long wavelength λ5
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 As the frequency of the error 
decreases(as the wavelength λ
increases), the error becomes 
increasingly smoother over the 
grid as only a small portion of 
the wavelength lies within any 
cell. This gets worse as the grid 
is further refined, leading to a 
higher number of equations as 
the size of the system 
increases

 The high frequency error appears oscillatory over an element 
and is easily sensed by the iterative method
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Multigrid methods improve the efficiency of iterative solvers by 
ensuring that the resulting low frequency errors that arise from 
the application of a smoother at any grid level are transformed 
into higher frequency errors at a coarser grid level

 By using a hierarchy of coarse grids, multigrid methods are 
able to overcome the convergence degradation
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Generally the coarse mesh can be formed using 
 either the topology and geometry of the finer mesh, this is akin 

to generating a new mesh for each coarse level on top of the 
finer level mesh

 or by direct agglomeration of the finer mesh elements; this 
approach is also known as the Algebraic MultiGrid Method 
(AMG)

A M G

1. In the AMG no geometric information is directly needed or used, and 
the agglomeration process is purely algebraic, with the equations at 
each coarse level reconstructed from those of the finer level, again 
through the agglomeration process

2. This approach can be used to build highly efficient and robust linear 
solvers, for both highly anisotropic grids and/or problems with large 
changes in the coefficients of their equations
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In either approach (GMG, AMG), a multigrid cycling procedure is 
used to guide the traversal of the various grid hierarchies. Each 
traversal from a fine grid to a coarse one involves:
I. a restriction procedure
II. the setup or update of the system of equations for the coarse 

grid level
III. the application of a number of smoother iterations

A traversal from a coarse grid to a finer one requires:
I. a prolongation procedure
II. the correction of the field values at the finer level 
III. the application of a number of smoother iterations on the 

equations constructed during restriction 
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Element Agglomeration/Coarsening
The first step in the solution process is to generate the coarse/ 
fine grid levels by an agglomeration/ coarsening algorithm. Two 
different approaches can be adopted for that purpose

 In the first approach, the coarse mesh is initially generated and 
the fine levels are obtained by refinement

This facilitates the definitions of the coarse-fine grid relations and is 
attractive in an adaptive grid setup. A major drawback however, is the 
dependence of the fine grid distribution on the coarse grid
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 In the second approach (recommended), the process starts 
with the generation of the finest mesh that will be used in 
solving the problem. The coarse grid levels are developed 
through agglomeration of the fine-grid elements, as shown in 
Fig.

with the agglomeration process based either on the elements geometry 
or on a criterion to be satisfied by the coefficients of neighboring 
elements

Agglomeration 
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Agglomeration of a fine grid level to form a coarse grid level: 

 Coarse grid levels are generated by fusing fine grid elements 
through an agglomeration algorithm

 For each coarse grid level, the algorithm is repeatedly applied 
until all grid cells of the finer level become associated with 
coarse grid cells

Agglomeration 
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The Restriction Step and Coarse Level Coefficients

Error at n: e(n); Residual at n: r(n)

Correction form: Original form: 

 The solution starts at the fine grid level. After performing few 
iterations, the error is transferred (restricted) to a coarser grid 
level and the solution is found at that level.

 Then after performing few iterations at that level the error is 
restricted again to a higher level and the sequence of events 
repeated until the highest or coarsest grid level is reached
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Let (k) denotes some level at which the solution has been found 
by solving the following system of equations in correction form 

The next coarser level is (k+1) to which the error will be 
restricted. Let GI represents the set of cells i on the fine grid level 
(k) that are agglomerated to form cell I of the coarse grid level 
(k+1). Then, the system to be solved on the coarse grid at level 
(k+1) is 

with the residuals on the RHS of Eq. computed as 

is the restriction operator (i.e., the interpolation matrix) 
from the fine grid to the coarse grid as defined by the 
agglomeration process 
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In AMG the restriction operator is defined in a linear manner to 
yield a summation of the fine grid residuals as 

Moreover, the coefficients of the coarse element are constructed 
by adding the appropriate coefficients of the constituting fine 
elements. Recalling that a linear equation after discretization has 
the form 

the coarse mesh (k+1) correction equation becomes 
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are derived directly from fine grid coefficients 
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The Prolongation Step and Fine Grid Level Corrections
The prolongation operator is used to transfer the correction from 
a coarse to a fine grid level. i.e., the error at a coarse grid cell will 
be inherited by all the children of this cell on the fine grid level

The correction is basically obtained from the solution of the 
system of equations at the coarse grid. The interpolation or 
prolongation to the fine grid level is denote as 

is an interpolation matrix from the coarse grid to the fine 
grid. Finally, the fine grid solution is corrected as 
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Traversal Strategies and Algebraic Multigrid Cycles

Traversal strategies refer to the way by which coarse grids are 
visited during the solution process, which are also known as 
multigrid cycle. The usual cycles used in the AMG method are the 
V cycle, the W cycle, and the F cycle 

V cycle

W cycle

F cycle
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 W cycle is based on applying smaller V cycles on each visited 
coarse grid level. In this manner, the W cycle consists of nested 
coarse and fine grid level sweeps with the complexity 
increasing as the number of AMG levels increases 

For very stiff systems, the V cycle may not be sufficient for accelerating 
the solution and therefore, more iterations on the coarse level are 
required

 The F cycle is a variant of the W cycle and can be thought of as 
splitting the W cycle in half. The F cycle requires less coarse 
level sweeps than the W cycle but more sweeps than the V 
cycle

F cycle lies in between the V and W cycling strategies
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