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XFEM in computational fluid mechanics

Governing equations for incompressible two-phase flow

ou
0; E-l—u-Vu —V.o=9;1

stress tensor
V.ou=0 _ 1 T
o(u, p)=—pl+2u;e(w) with g(u)=5(Vu+(Vu)")

® Dirichlet and Neumann boundary
conditions on the outer boundary

~

u=u oOn Fu X (0, fend)

A

o-n=h onl}x(0,n)
® Conditions apply at the interface:

[ulp, =0 on I'q x (0, fend)

—[olr,-a=7-k-fi on [qx (0, fend)
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XFEM in computational fluid mechanics

Discontinuous state variables at the interface

® The density and viscosity fields

01 VYxeQq(1), ny VxeQq(t)

o(X, 1) = p(x, 1) =
%) VXEQQ(f), 2%) VXEQQ(t)

® Recall that discontinuities may be classified into
strong and weak. In the case of strong discontinuities, a
jump and a change in the gradient are present in the field.
For weak discontinuities there is only a kink in the field

strong and weak discontinuity
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XFEM in computational fluid mechanics

Discontinuous state variables at the interface

[ulr, =0 on I'qx (0, fenq)

_[G]l—dﬁ:’})Kﬁ on rdX(O, tend)

® Interface condition states that the velocities are continuous
across interface, or, in other words, the jump in the velocity
field is zero

® The second interface condition, states that the surface
tension balances the jump of the normal stress at the

interface
Thus

® The velocity fields u(x,t) are weakly discontinuous, here as
the pressure field p(x,t) has a strong discontinuity at the
interface
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XFEM in computational fluid mechanics

Discontinuous state variables at the interface

The presence of strong and weak discontinuities when simulating two-
fluid flows has been realized by many different approaches: In interface
tracking methods, weak discontinuities are accounted for by the
standard FEM automatically

Strong discontinuity in the pressure field can be realized by using
completely decoupled meshes for the two-fluid regions. However, these
methods often do not allow topological changes of the two-fluid domains

In interface-capturing methods, the strong and weak discontinuities may
be considered by local h-refinement in the vicinity of the interface. For
interface-capturing methods, especially strong discontinuities often pose
a serious problem for the accuracy of the overall simulation

Enriched methods such as the XFEM are ideally suited for two-fluid flow
simulations as they consider both, strong and weak discontinuities

within elements, by special enrichments of the approximation space
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XFEM in computational fluid mechanics

Description of the interfaces by the level-set method

® The signed-distance function is used as a particular level-set
function,

$(X)==+ min ||x—Xx"|] VxeQ
x*e[*

® Level-set function is interpolated
by standard FE shape function  °°> %

1

" (x) =Y NFM(x) ¢,

1el

® Standard FE shape function is used for all elements that are
not cut by the interface

® In cut elements, we subdivide the quadrilateral element into
two triangulars and employ linear interpolation functions

CVIHL Sommous e R o
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XFEM in computational fluid mechanics

The intrinsic XFEM for two-fluid flows

intrinsic XFEM falls into three steps

1. The domain is decomposed into subdomains that overlap in
one element layer

2. Construction of shape functions for all nodes of each
subdomain

They build partition of unities (PUs) with certain properties. Standard
finite element or special enriched MLS functions are employed here

3. The shape functions in the overlapping element layers are
coupled such that only one shape function per node results
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XFEM in computational fluid mechanics

Decomposition of the domain

® The set of nodes associated with elements that are cut by
the interface : I_,

Q, : cut element

Q, : standard
element

Q, : blending
element

e nodein 7/, e nodein [/,
B elementin @, element in @,
B clementin @,
(a) (b) O] elementin @,

CMH COMPUTATIONAL MARINE HYDRODYNAMICS LAB
SHANGHAI JIAO TONG UNIVERSITY

NA26018 Finite Element Analysis of Solids and Fluids




XFEM in computational fluid mechanics

Decomposition of the domain

® Subdomain Q.;,, and @, (overlapped)

e nodein /iy, e nodein /g
(a) W elementin Q. (b B clementin @,
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XFEM in computational fluid mechanics

Construction of PUs in each subdomain

In each subdomain Q,;, and Q,,,, a set of shape functions is
constructed for each of the nodes in I.;,,and I,,,,
respectively

Standard bi-linear finite element shape functions are used
in Q.- It is noted that these shape functions are not
constructed in cut elements, because they are not suited for
capturing the strong or weak discontinuity across the
interface

In Q,;,, which is in the vicinity of the interface, special
enriched MLS functions are constructed. The enrichment
enables the shape functions to represent jumps and kinks in
the solution of a field variable
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XFEM in computational fluid mechanics

Moving least-squares (MLS) method

® MLS shape functions is defined as

NMES (x) =pT (x) [M(x)] ™' w; (x)p(x;)

with Mx)= Y w;(x)px)p’ (X))
telviLs
w; (x): MLS weight functions
p(x): the intrinsic basis consisting of k components

® The set of MLS functions builds a PU over the domain @, ,
I.e. for any function in the basis p(x):

S NMYSx)p(xi)=px), xeQus

ielvis
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XFEM in computational fluid mechanics

Special weight functions w; (x)

The weight functions must be constructed so as to ensure a
sufficient overlap such that the MLS moment matrices are
invertible

wﬁ(x):2~N§EM(X)—|— S NEM(x)
ielE
The weight function corresponding to the center node has a
support which includes the neighboring elements of that node
(dark-gray area) and the next-neighboring elements (light-gray

area)
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XFEM in computational fluid mechanics

Basis functions for discontinuities

® For smooth solutions, the basis vector p(x) of the MLS often
consists of monomials depending on the desired order of

accuracy
For example, pT(x) = [1, x, x*] serves as a quadratic basis in one
dimension, pT(x) = [1,x,y] as a linear basis in two dimensions

® In contrast to finite element shape functions, the basis in the
MLS method can be easily enriched by any desirable terms
which enable the resulting MLS shape functions to improve
their approximation properties in the presence of non-
smooth solutions

For weak discontinuities we define

p'(x)=[1,x,y,abs(¢(x))]
For strong discontinuities we define

p'(x)=[1,x,y,abs(¢(x)), sign(¢(x))]
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XFEM in computational fluid mechanics

Coupling the PUs

Different sets of shape functions are individually defined over
the overlapping subdomains Qg and Qy; s With respect to the

nodal sets I\ and Iy, respectively. The subdomains Qg and
Qusoverlap in the transition area Qrrans

® In elements that are in Q) \Qrrans, ONlY finite element
shape functions are evaluated

Nix)=N""Mx) vxeQrem\Quans Vi € Irem

® For elements in Qy;\Qrrans, ONlYy MLS shape functions are
present

Nx)=N"(x) ¥xeQmrs\Quans Vi € IvLs

® In the transition area Qzans, fOr each node in Itpans, @
coupling is required
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XFEM in computational fluid mechanics

Coupling the PUs

R =Y NM(x)

ielcut

® By the definition of ramp function R(x), the resulting shape

function is

Nix)=N""Mx).[1- Rx)]+ N x)- R(X) VX€Quans Vi € Lrans

ramp function R(x)

1 D I

e nodein /

(a)

Shape functions of a particular node for the case of
a (a) weak discontinuity and (b) strong discontinuity
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XFEM in computational fluid mechanics

Governing equations in weak form

® The streamline-upwind Petrov-Galerkin (SUPG) and pressure-
stabilizing Petrov—-Galerkin (PSPG) formulation of the weak
form is considered here, recall that

0 h
fwh-gi (aL +u"‘-Vuh) dQ+f s(wh):c(uh,ph)dQ
Q [ Q

~ 1
—[ Wh-hdr—l—f th-uth+ > Tj (uh-th—I——th)
I'h Q je2/ad i

ou”
: [Qi (% +u” -Vuh) —V-G(uh, ph)] dQ

:[ inh-fdQJr/ yew -ndl
Q r

® The discretization of weak form will not be presented here,
since it has no more differences as we discussed in last
course, except the enrichment terms
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XFEM in computational fluid mechanics

Numerical Integration

® In elements not cut by the interface, the proposed shape
functions of the intrinsic XFEM are sufficiently smooth such
that standard Gauss integration is suitable

® However, in cut elements, the shape functions have jumps or
kinks along the interface depending on the enrichment. This
must be considered adequately which is achieved by dividing
the elements into integration cells

The partitioning depends on the interpolation of the level-set function

¢ (%)
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XFEM in computational fluid mechanics

Numerical Integration
® E.g., here each cut quadrilateral element is subdivided into
two triangulars. In each triangular, linear interpolation

functions are employed
® In each integration cell, standard Gauss points are placed

000'.1
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XFEM in computational fluid mechanics

Moving interfaces in the level-set method

® The level-set method is used for the implicit description of
the moving interfaces between the two fluids

0P
o V=0
Py +u-Vo

® The SUPG-stabilized and discretized weak form may be stated
as

h
f (l//h—l—fuh-Vl//h)' (a——l—uh-quh) dQ=0
0 ot

® Standard bi-linear shape functions can be used. This is
justified due to the fact that the level-set function is smooth
everywhere in the computational domain
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NA26018 Finite Element Analysis of Solids and Fluids CMH SEIANGH% JIAO TONG %ngf‘{“{,



XFEM in computational fluid mechanics

Numerical results

® Sloshing tank

Initially, the two fluids are separated
by a sinusoidal interface

={(x,y):y=1.0140.1-sin((x

The properties of two fluids are set

—0.5)-m),0<x <1}

Intr. XFEM, height at left side

Intr. XFEM, 40x60
— Intr. XFEM, 80x120
- - - Strd. FEM, 160x240

X Reference

up as water and gas, no surface
tension is considered here
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XFEM in computational fluid mechanics

Numerical results

® Collapsing water column

This test case considers a collapsing water
column in a domain 0.584m X 0.45m

t=0.0s
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o
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t=0.1s
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L w
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XFEM in computational fluid mechanics

Numerical results
® Rising bubble
Bubble flows at different Eotvos -
(Eo) numbers are considered "
(ot =0p7)-d2
o8 (p"—p7)-d | @
')) b

T

X

2d

Surface tension y=10"kg/s* «

Comparison of the interface positions obtained by

the intrinsic XFEM and standard XFEM (dashed

white lines)
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XFEM in computational fluid mechanics

Summary

The approximation space used in the intrinsic XFEM is able to
represent inner-element jumps and kinks exactly. This
approximation space is built by standard finite element
shape functions in the majority of the domain and special
enriched moving least-squares functions in the vicinity of the
interface

Inbetween the FE and MLS regions, a coupling of the two
classes of shape functions is realized

Most importantly, the resulting approximation in the intrinsic
XFEM has the same number of unknowns as a classical FE
approximation

The computational work for the evaluation of the MLS shape
functions is increased, however, these functions are only
needed locally near the interface
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