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Governing equations for incompressible two-phase flow

 Conditions apply at the interface: 

 Dirichlet and Neumann boundary 
conditions on the outer boundary 

stress tensor 
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Discontinuous state variables at the interface 

 The density and viscosity fields 

 Recall that discontinuities may be classified into
strong and weak. In the case of strong discontinuities, a 
jump and a change in the gradient are present in the field. 
For weak discontinuities there is only a kink in the field

strong and weak discontinuity 
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Discontinuous state variables at the interface 

 Interface condition states that the velocities are continuous 
across interface, or, in other words, the jump in the velocity 
field is zero

 The second interface condition, states that the surface 
tension balances the jump of the normal stress at the 
interface

Thus

 The velocity fields 𝐮(𝐱, 𝑡) are weakly discontinuous, here as 
the pressure field 𝑝(𝐱, 𝑡) has a strong discontinuity at the 
interface 
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Discontinuous state variables at the interface 

 The presence of strong and weak discontinuities when simulating two-
fluid flows has been realized by many different approaches: In interface 
tracking methods, weak discontinuities are accounted for by the 
standard FEM automatically

 Strong discontinuity in the pressure field can be realized by using 
completely decoupled meshes for the two-fluid regions. However, these 
methods often do not allow topological changes of the two-fluid domains

 In interface-capturing methods, the strong and weak discontinuities may 
be considered by local h-refinement in the vicinity of the interface. For 
interface-capturing methods, especially strong discontinuities often pose 
a serious problem for the accuracy of the overall simulation

 Enriched methods such as the XFEM are ideally suited for two-fluid flow 
simulations as they consider both, strong and weak discontinuities 
within elements, by special enrichments of the approximation space
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Description of the interfaces by the level-set method

 The signed-distance function is used as a particular level-set 
function, 

 Level-set function is interpolated 
by standard FE shape function 

 Standard FE shape function is used for all elements that are 
not cut by the interface

 In cut elements, we subdivide the quadrilateral element into 
two triangulars and employ linear interpolation functions 
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The intrinsic XFEM for two-fluid flows 

intrinsic XFEM falls into three steps

1. The domain is decomposed into subdomains that overlap in 
one element layer

2. Construction of shape functions for all nodes of each 
subdomain

They build partition of unities (PUs) with certain properties. Standard 
finite element or special enriched MLS functions are employed here

3. The shape functions in the overlapping element layers are 
coupled such that only one shape function per node results 
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Decomposition of the domain 

 The set of nodes associated with elements that are cut by 
the interface : 𝐼𝑐𝑢𝑡

𝑸𝟏 : cut element

𝑸𝟐 : standard 
element

𝑸𝟏 : blending 
element
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Decomposition of the domain 

 Subdomain 𝑄𝐹𝐸𝑀 and 𝑄𝑀𝐿𝑆 (overlapped)
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Construction of PUs in each subdomain 

 In each subdomain 𝑄𝐹𝐸𝑀 and 𝑄𝑀𝐿𝑆, a set of shape functions is 
constructed for each of the nodes in 𝑰𝐹𝐸𝑀and 𝑰𝑀𝐿𝑆, 
respectively

 Standard bi-linear finite element shape functions are used 
in 𝑄𝐹𝐸𝑀. It is noted that these shape functions are not 
constructed in cut elements, because they are not suited for 
capturing the strong or weak discontinuity across the
interface

 In 𝑄𝑀𝐿𝑆, which is in the vicinity of the interface, special 
enriched MLS functions are constructed. The enrichment 
enables the shape functions to represent jumps and kinks in 
the solution of a field variable 
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Moving least-squares (MLS) method 

 MLS shape functions is defined as

𝑤𝒊 (𝐱): MLS weight functions 
𝐩(𝐱): the intrinsic basis consisting of k components

 The set of MLS functions builds a PU over the domain 𝛀𝑀𝐿𝑆, 
i.e. for any function in the basis 𝐩(𝐱):
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Special weight functions 𝑤𝒊 (𝐱)

The weight function corresponding to the center node has a 
support which includes the neighboring elements of that node 
(dark-gray area) and the next-neighboring elements (light-gray 
area)

The weight functions must be constructed so as to ensure a
sufficient overlap such that the MLS moment matrices are 
invertible 
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Basis functions for discontinuities 

 For smooth solutions, the basis vector 𝐩(𝐱) of the MLS often 
consists of monomials depending on the desired order of 
accuracy

For example, 𝐩𝐓(𝐱) = [𝟏, 𝒙, 𝒙𝟐] serves as a quadratic basis in one 
dimension, 𝐩𝐓(𝐱) = [𝟏, 𝒙, 𝒚] as a linear basis in two dimensions

 In contrast to finite element shape functions, the basis in the 
MLS method can be easily enriched by any desirable terms 
which enable the resulting MLS shape functions to improve 
their approximation properties in the presence of non-
smooth solutions 

For weak discontinuities we define 

For strong discontinuities we define 
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Coupling the PUs 

Different sets of shape functions are individually defined over 
the overlapping subdomains 𝛀FEM and 𝛀MLS with respect to the 
nodal sets IFEM and IMLS, respectively. The subdomains 𝛀FEM and 
𝛀MLSoverlap in the transition area 𝛀TRANS

 In elements that are in 𝛀FEM\𝛀TRANS, only finite element
shape functions are evaluated 

 For elements in 𝛀MLS\𝛀TRANS, only MLS shape functions are 
present 

 In the transition area 𝛀TRANS, for each node in ITRANS, a 
coupling is required 
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Coupling the PUs 

 By the definition of ramp function 𝑅(𝐱), the resulting shape 
function is

ramp function 𝑅(𝐱)

Shape functions of a particular node for the case of 
a (a) weak discontinuity and (b) strong discontinuity
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Governing equations in weak form 

 The streamline-upwind Petrov–Galerkin (SUPG) and pressure-
stabilizing Petrov–Galerkin (PSPG) formulation of the weak 
form is considered here, recall that

 The discretization of weak form will not be presented here, 
since it has no more differences as we discussed in last 
course, except the enrichment terms
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Numerical Integration 

 In elements not cut by the interface, the proposed shape 
functions of the intrinsic XFEM are sufficiently smooth such 
that standard Gauss integration is suitable

 However, in cut elements, the shape functions have jumps or 
kinks along the interface depending on the enrichment. This 
must be considered adequately which is achieved by dividing 
the elements into integration cells 

The partitioning depends on the interpolation of the level-set function 

𝜙(𝐱)
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Numerical Integration 

 E.g., here each cut quadrilateral element is subdivided into 
two triangulars. In each triangular, linear interpolation 
functions are employed

 In each integration cell, standard Gauss points are placed 
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 The level-set method is used for the implicit description of 
the moving interfaces between the two fluids 

 The SUPG-stabilized and discretized weak form may be stated 
as 

 Standard bi-linear shape functions can be used. This is 
justified due to the fact that the level-set function is smooth 
everywhere in the computational domain
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Numerical results

 Sloshing tank  

Initially, the two fluids are separated 

by a sinusoidal interface

The properties of two fluids are set 

up as water and gas, no surface 

tension is considered here 
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Numerical results

 Collapsing water column 

This test case considers a collapsing water 

column in a domain 0.584m×0.45m
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Numerical results

 Rising bubble 

Bubble flows at different Eotvos

(Eo) numbers are considered

Surface tension

Comparison of the interface positions obtained by 

the intrinsic XFEM and standard XFEM (dashed 

white lines) 
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Summary

 The approximation space used in the intrinsic XFEM is able to 
represent inner-element jumps and kinks exactly. This 
approximation space is built by standard finite element 
shape functions in the majority of the domain and special 
enriched moving least-squares functions in the vicinity of the 
interface

 Inbetween the FE and MLS regions, a coupling of the two 
classes of shape functions is realized

 Most importantly, the resulting approximation in the intrinsic 
XFEM has the same number of unknowns as a classical FE 
approximation

 The computational work for the evaluation of the MLS shape 
functions is increased, however, these functions are only 
needed locally near the interface
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