;M@,{%@ - Approximation Theory

To do: given u(x) in €2, approximate by known functions

u(x) ~ uh(a’;) = f*(x)a; = N*(z)i,

Approximation of Functions —
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@ YELALY Least Squares Problem




YEXALE Approximation Theory

2. Weighted Residual Methods(WRM):

Define: el = oy — ult - the error or residual
Require: e" -0 in O

Introduce a set of weighting functions W?*; 1 =1,2,.. M
Require that:

/W%’ehdszxo Ci=1,2,.. M
2

Then, as M — oo , € — 0 at all points in Q
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YERALE From Approximation to Operators

Choice of N*, W* defines the method:
- N* polynomial, W* = §(z;) : FDM
- N polynomial, W* =1 if xC Q.;, 0 otherwise : FVM
- N* polynomial, W* = N* : GFEM
- N* polynomial, W* # N* : Petrov-GFEM
- N* spectral, W* = 6(z;) : SEM
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Description of Governing Equations




YELALY CFD Notations

; du du  Hu O u SPuy
PDE of p-th order f (u,x,t,a—m,...: Bz ) BE? 51,‘:15:,‘:2,...?—51;,) — i}
scalar unknowns u=1u(x,t), xeR*, teR, n=1,23
vector unknowns ve=wiEill, VvEeR™ =12
Nabla operat V=il il ik ( ) =} ) )
perator —15m+35y+ D2 X=(Z,Y,2), V = (Up,Uy,Vs
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Conservation Laws

Physical principles Mathematical equations
. Mass is conserved e continuity equation

. Newton’s second law e momentum equations

. Energy is conserved e cnergy equation

It is important to understand the meaning and significance of each equation

in order to develop a good numerical method and properly interpret the results

Description of fluid motion z
Lulerian monitor the flow characteristics ‘* (a1:95.81)
in a fixed control volume "er -
5 ¥
Lagrangian  track individual fluid particles as
rd
they move through the flow field 4



YFELALY Two ways of describing a fluid flow

® Lagrangian description, Eulerian description

Y

£

Lagrangian description; snapshot ; i ; .
srang P d P Eulerian description; Cartesian grid



YEAALY Flow models and reference frames
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- P
ey e — WV —
Bakp
. ____________-—— - q__‘_l""——-.___ _I__F__F_______;..
fixed infinitesimal CV moving infinitesimal CV

Good news: all flow models lead to the same equations I

differential



YEZALY Eulerian vs. Lagrangian
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Definition. Substantial time dem”uatz’ve f} is the rate of change for a moving

fluid particle. Local time derivative 2 57 1s the rate of change at a fized point.
Let u = u(x,t), where x = x(xg,t). The chain rule yields

@_@u_l_@udﬂ:_l_@_u@_'_ﬁudz_@u
dt Ot Oxdt Oydt Ozdt Ot

+v-Vu
substantial derivative — local derivative + convective derivative

Reynolds transport theorem

d du(x,t)
& | u(x,t)dV ]v:Vt Y dV + [SESE u(x,t)v-ndS

rate of change in ~ rate of change in convective transfer

a moving volume a fized volume through the surface




YEAALY
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D Do
= = iy vy
Dt g
H'F{ _'_{
Lagrangian Eulerian
DG aG i
= ~ + v VG
Dt ot hoe
T - Convective
Lagragian Eulerian
rate of change
rate of change rate of change
Dv ov
— = — — v Vo
Dt ot S——
-~ b ol Convective
Lagragian Eulerian .
acceleration

acceleration acceleration




YELAAE Continuity Equation
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Physical principle: conservation of mass

dm d ap
dV = Lav dS =0
@ B /V;v; ot T /.E s

accumulation of mass inside C'V = net influx through the surface

Divergence theorem yields Continuity equation
/ Q—ﬁl\_/'(pv) dV = () = ﬁ_erV(v)—[}
ot ot i
Lagrangian representation
dp
V-(pv)=v-Vp+pV-v = — +pV-v=0

Incompressible flows: %'? V-.v =0 (constant density)



YAEZArE Momentum Equation
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Physical principle: f =ma (Newton's second law)

total force f =—pgdV +hdS, where h=0-n

body forces g gravitational, electromagnetic,. . .

surface forces h  pressure | viscous stress

Stress tensor oc=—-pL+T momentum flux

For a newtonian fluid viseoms stress is nronartional to velocitv eradients:




YAEZArE Momentum Equation
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Jo 7o

JdV jvlv o+ pg| dV, o=-pl+T

Momentum equations d(’;j:) y=-Vp+V - -17+pg
G
A pv) , ov ap dv
51 +V-(pv®vVv)= [5‘.5 +v- Vv] [@ +W - (pv)] =g

substantial derivative continuity equation



YEZALY Energy Equation
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Physical principle: de =s+w (first law of thermodynamics)

—]ds de accumulation of internal energy
s  heat transmitted to the fluid particle

w rate of work done by external forces

Heating: s = pgdV — f,dS Fourier’s law of heat conduction

g internal heat sources ‘ f, = —kVT \

Jq diffusive heat transfer

the heat fluz is proportional to the
absolute temperature i 2T

w local temperature gradient
k  thermal conductivity p 4

Work done per unit time = total force x velocity

w="Ff-v=pg-vdV +v-(0-n)dS, c=—-pL+T -
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@x;&xu? Energy Equation
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Total energy equation

A pk
(gt ) FV - (pEV) =V - (&VT)+pg—V - -(pv)+v - (V- T)+VVv:iT+pg- Vv
d(pl7) ok ap dF
Bv) = B2 )
5 -V - (plv) 'ﬂ[@i } | [@i FV - (pv) r
subst:a.ntiaTderivative c:-:mtinuit;ﬂquatim]
Momentum equations i—; =—-Vp+V- -7+ pg (Lagrangian form)
dE de dv  Jd(pe)

p = FV-(pev)+v-[-Vp+ V- -7+ pg]

i PV PE T o

Internal energy equation

d(pe)
ot

+V-(pev) =V -(kVT)+pqg—pV-v+Vv:T




Summary of GE




YELALY Conservation form of GE
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| pr | | (Pt +pP)V—KVI —T-V | | Plg+8-V) |

Navier-Stokes equations in divergence form

%|v.F—Q UeR®’, FeR>*, QeR’

e representing all equations in the same generic form simplifies the programming

e it suffices to develop discretization techniques for the generic conservation law =



YELALY Constitive relations

Variables: p,v,e,p, 7, T Fquations: continuity, momentum, energy
A The number of unknouns exceeds the number of equations.

1. Newtonian stress tensor

1 2
7= (AV - v)I 4+ 2uD(v), D(v) = E(Vv +VvT), Am —gH




§F IEVT Initial and Boundary conditions

Solid wall Ty ={x €l :v-n=0} Outlet Toyy=4{xel':v-n>0}

v =20 no-slip condition V- =0y or —p+n-7t-n=»_0
T =T, given temperature or Neg=1s or s-7-n=>0
(%) = —%— prescribed heat flux prescribed velocity vanishing stress

The problem is well-posed if the solution exists, is unique and depends continuously

on 1C and BC. Insufficient or incorrect IC/BC may lead to wrong results (if any).
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Dimensionless form of GE

Typically:
L : Characteristic Length
[Voo| @ Inflow /Free-Stream Velocity
P - Inflow/Free-Stream Density
T~ : Inflow/Free-Stream Temperature
ltno : Inflow/Free-Stream Viscosity
koo : Inflow/Free-Stream Conductivity




;Mﬂg B Dimensionless form of GE

Define Non-Dimensional Quantities:

b W | T Vy
t* e X * TR " *m
7 S L
*x p ® T * p * €
T, ——— T —_— p s £ =
J Poc Too Poo| Voo |? Voo |2
W L S 1 k

Rews 1 oo (v—1)M2 PrReo 1. | -
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YEZALE Model Simplification
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Purpose: to reduce the computational cost

| Compressible Navier-Stokes equs.mtionsl

Jiie= mnV \L =

Incompressible Navier-Stokes (&quatimlsl | Compressible Euler equations

Stokes flow  boundary layer inviscid Fuler equations  potential flow

Derivation of a simplified model

1. determine the type of flow to be simulated

-2

. separate important and unimportant effects
3. leave irrelevant features out of consideration
4. omit redundant terms/equations from the model

5. prescribe suitable initial/boundary conditions



Incompressible flows




